
VISUALIZING THREE-DIMENSIONAL GRAPH DRAWINGS

SEBASTIAN HANLON
Bachelor of Science, University of Lethbridge, 2004

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Copyright Sebastian Hanlon, 2006

VISUALIZING THREE-DIMENSIONAL GRAPH DRAWINGS

SEBASTIAN HANLON

Approved:

Signature Date

Supervisor: Dr. Stephen Wismath

Committee Member: Dr. Howard Cheng

Committee Member: Dr. Timothy Pope

Committee Member: Dr. Daniela Sirbu

External Examiner: Dr. David Bremner

Chair, Thesis Examination Committee:
Dr. Marc Roussel

Abstract

The GLuskap system for interactive three-dimensional graph drawing applies techniques of

scientific visualization and interactive systems to the construction, display, and analysis of

graph drawings. Important features of the system include support for large-screen stereo-

graphic 3D display with immersive head-tracking and motion-tracked interactive 3D wand

control. A distributed rendering architecture contributes to the portability of the system,

with user control performed on a laptop computer without specialized graphics hardware.

An interface for implementing graph drawing layout and analysis algorithms in the Python

programming language is also provided. This thesis describes comprehensively the work

on the system by the author—this work includes the design and implementation of the ma-

jor features described above. Further directions for continued development and research in

cognitive tools for graph drawing research are also suggested.

iii

Acknowledgments

Firstly, I would like to thank my advisor, Dr. Stephen Wismath, for encouraging me to

pursue graduate studies in computer science—without him, this thesis would not exist. He

has furthermore been supportive and enthusiastic throughout the course of my studies; one

could not ask for a better supervisor. I also wish to thank the rest of my thesis committee

and the external examiner for their advice and quality assurance efforts.

I gratefully acknowledge the support of the Natural Sciences and Engineering Research

Council of Canada (NSERC) for providing major funding in support of this research.

Thanks are also extended to my friends and colleagues for providing support, advice,

and encouragement as I completed this thesis; particularly Susan Beaver, Paul Dawson,

Barry Gergel, David Lenz, Brian McFee, Elspeth Nickle, Ed Pollard, Tiffany Proudfoot,

Patrick Stewart, and Katrina Templeton. Thanks as well to the development communities

supporting the Twisted and wxPython packages.

Special thanks are due to my very good friend Kim Hansen for shoring up my mental

stability and motivation throughout the research and writing process.

Finally, I thank my parents Vincent and Teresa Hanlon and my brother Matt for their

continual and loving support.

iv

Contents

Approval/Signature Page ii

Abstract iii

Acknowledgments iv

Table of Contents v

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Motivations . 2
1.2 The GLuskap VR System . 2
1.3 Applications Of 3D Graph Drawing . 3
1.4 Structure Of This Document . 4

2 Background 7
2.1 Graph Drawing . 7
2.2 Visualization and Interaction . 16
2.3 Interactive 3D Graph Drawing . 27

3 Design 32
3.1 Software System . 32
3.2 Hardware System . 41

4 Implementation 46
4.1 The Visualization Hardware System . 46
4.2 Interactive Graph Drawing Software . 50
4.3 Software Engineering Techniques . 73

v

5 Evaluation 80
5.1 Other Interactive Graph Drawing Systems 80
5.2 Best Practices For Visualization and Interaction 86
5.3 Software Engineering Techniques . 91

6 Conclusions 95
6.1 Future Work . 96

Bibliography 101

vi

List of Tables

4.1 Context menu structure . 68

vii

List of Figures

2.1 Example Graph: Vertex and Edge List . 9
2.2 Example Graph: Adjacency List . 9
2.3 Example Graph: Adjacency Matrix . 9
2.4 Example Graph: Node-Link Diagram . 9
2.5 La Trahison des Images . 17
2.6 Stereoscopic Depth Cue Example . 22

3.1 Conventional 3D perspective display . 34
3.2 Stereographic 3D display . 35
3.3 Two Laptops for Portable Passive Stereographics 37
3.4 Primary and Two Secondary Nodes for Portable Passive Stereographics . . 38
3.5 Overlapping Alignment of Two Projectors 44

4.1 GLuskap System Hardware Components 47
4.2 GLuskap Data Flows . 51
4.3 Primary Node Window System Interface 61
4.4 Fullscreen 3D Interface . 61

5.1 GLuskap Texture Patterns . 90

viii

Chapter 1

Introduction

Since the early 1990s, the increasing power and diminishing cost of computer proces-

sors (and the related availability of specialized 3D graphics acceleration hardware) has

brought high-performance graphics realization capability to commodity computing plat-

forms. Hardware capable of supporting dynamic visualization of detailed virtual scenes

and objects is available at a low cost, and standard APIs (including OpenGL) allow appli-

cations to be written and deployed in a portable manner.

While the development of graphics technology has been driven in large part by the

consumer market for electronic entertainment, the 3D capability so widely used to sell

games also benefits researchers and developers in less commercial disciplines. Research

into information visualization techniques has been stimulated by the capability of computer

systems to facilitate interactive exploration of data sets, with users issuing queries and

having the results displayed in graphical form with a minimum of waiting.

The popularity of 3D graphics displays has also stimulated research in the field of three-

dimensional graph drawing. In two dimensions, only the class of planar graphs can be

drawn without edge crossings. This restriction is removed in three dimensions—all graphs

can be drawn in three dimensions without edge crossings, so considerable research is fo-

1

cused instead on reducing the volume required (determined asymptotically) to draw various

classes of graphs.

1.1 Motivations

Software tools designed specifically for working with graph layouts in three dimensions

are relatively rare. Most are focused on implementing particular algorithms or classes of

algorithms. For interactive experimentation with layout ideas or communication of visual

ideas between individual researchers, it is often easier to use limited physical models (for

example, Styrofoam balls and wire to represent vertices and edges) than to write formal

implementations of prototype layout algorithms or to use a two-dimensional interface to

manipulate a three-dimensional drawing.

The idea behind the GLuskap system here described is to develop an interface for in-

teracting with three-dimensional graph drawings that uses principles of interactive systems

and data visualization to best effect. We wish to build a tool that provides an effective,

naturalistic interface on the order of Styrofoam balls and pipe cleaners while retaining the

advantages of digital modeling: virtually unlimited resources, zero-cost data replication

and communication, and the ability to automate and extend nearly any aspect of the pro-

cess.

1.2 The GLuskap VR System

The GLuskap system for interactive three-dimensional graph drawing has been developed

at the University of Lethbridge under the direction of Dr. Stephen Wismath. Building

on the existing GLuskap software product written in the Python programming language,

this system integrates the application software with a specialized hardware system to sup-

2

port 3D graph drawing research activities in a large-screen (6.0’ × 8.0’, 1.83m × 2.44m)

rear-projected stereographic environment with immersive features. Both head-tracking and

wand-tracked interaction are supported.

The system is reasonably portable to maximize efficient use of space and also increasing

potential uses of the system in research, visualization, and teaching roles. To achieve this

portability requirement, a networked rendering architecture is supported by the GLuskap

software and is implemented using a laptop and two small form factor computers connected

over Ethernet. The computing resources, motion tracking equipment, and projectors and

optical equipment (without the large screen) pack down into three travel cases; the large rear

projection screen and frame requires two additional packing tubes for storage or transport.

The system can also be adapted to work with a lenticular front-projection screen if required.

In the course of my thesis work, I have been solely responsible for the development

and maintenance of the GLuskap software program as it has been enhanced to support the

visualization and interaction technologies described in Chapters 3 and 4. My work has also

included the design and implementation of the hardware system that supports the large-

screen immersive 3D interface.

1.3 Applications Of 3D Graph Drawing

The algorithms and approaches of three-dimensional graph drawing can be put to use in

several practical areas. As a visualization technique for relational data, 3D drawing tech-

niques are of obvious utility when working with data sets involving multi-dimensional data.

These include, but are not limited to, scenarios where data objects are associated with po-

sitional attributes that can be translated into the virtual space directly.

3

Large data set visualization More generally, extending the display media into three

dimensions allows users to effectively interpret and manipulate larger data sets than would

otherwise be possible, especially in an interactive situation where the user can alter the

perspective of the data display. 3D organizational techniques like cone trees (introduced by

Robertson et al. [RMC91]) and Munzner’s H3 [Mun97] have been developed to maximize

efficiency for displaying large quantities of data.

Displaying data in virtual environments provides the user with a context in which to

integrate large data sets. Much like visiting a new building or town, the brain can build

mental maps using the spatial relationships between features and landmarks.

Space minimization for wire-routing As advances in VLSI construction processes en-

able circuits to be built in multiple layers, three-dimensional graph drawing techniques

(especially in the area of orthogonal drawings) have become relevant in this area. The con-

nections between individual components on a chip die are easily represented as an undi-

rected graph. Research in this area is typically focused on finding layouts which may be

constrained in one or more dimensions (preserving the overall planar nature of the chip

package) while minimizing the length of individual wire connections and the overall sur-

face area and volume of the circuit.

1.4 Structure Of This Document

The remainder of this thesis is divided into five chapters. The first part of Chapter 2 in-

troduces the field of three-dimensional graph drawing and discusses some results from the

literature pertaining to the area of graph drawing algorithms which GLuskap is designed

to work with. Next, a brief treatment of human visual perception and interaction princi-

ples is given. Attention is focused on those characteristics which are relevant to the design

4

and implementation of the GLuskap interactive interface. Finally, different types of exist-

ing software for three-dimensional graph drawing are surveyed. Some related products,

including the antecedent version of the GLuskap software, are reviewed briefly.

Chapter 3 describes concepts considered in the design of the GLuskap system. Partic-

ular requirements for data visualization techniques incorporated directly into the software

are described. The accommodations required to maximize the portability of the system,

particularly in producing stereographic output on a large projection screen, are also cov-

ered.

Detailed coverage of the construction and implementation of the system is provided in

Chapter 4. An in-depth examination of the component hierarchy, control flow, and data-

flow architecture of the GLuskap software is given here; this includes details of the imple-

mentation of the networked stereographic rendering system and the mechanics of data flow

for handling the Flock of Birds motion tracking system. All aspects of the large-screen

interactive user interface are described, along with the programming interface for plug-in

scripting of drawing algorithms in Python. The chapter concludes with a discussion of

software engineering and development techniques used in the construction of the GLuskap

application software.

In the fifth chapter, the work is evaluated in retrospect. The features of the GLuskap

system are compared with other software products for interactive three-dimensional graph

drawing, including the previous version of the GLuskap software. The visualization and

interaction techniques implemented in the current system are examined in comparison to

alternative strategies and pertinent ideas from the related literature.

Chapter 6 presents some concluding remarks on what has been accomplished through

the development of the GLuskap system and the accompanying research and documenta-

tion, including this thesis. Ready opportunities for additional work to extend the usefulness

of this product, as well as directions for continued research into methods for providing cog-

5

nitive support to researchers in graph drawing, are described here.

6

Chapter 2

Background

2.1 Graph Drawing

The study of graphs is fundamentally concerned with the relationships between distinct

entities. Graphs can represent thought processes, bureaucratic organizational hierarchies,

networks of various kinds, state diagrams for automata, procedural flowcharts, digital logic

circuits, and many other concepts. In all of these contexts, it is their relational nature that

makes the graph data structure applicable. Here we will primarily concern ourselves not

with the domain-specific uses of graphs, but instead consider graphs independent of any

particular context in which they may be used.

Abstracted from any deeper semantic content, we call the entities nodes or vertices,

and the relations between them edges. Behzad and Chartrand offer the following formal

definition of a graph:

A graph G (sometimes called an ordinary graph) is a finite, non-empty set V

together with a (possibly empty) set E (disjoint from V) of two-element subsets

of (distinct) elements of V . Each element of V is referred to as a vertex and V

itself as the vertex set of G; the members of the edge set E are called edges. By

7

an element of a graph we shall mean a vertex or an edge. [BC71]

For each edge e = {u,v}, e is said to be incident to u and v. u and v are said to be

adjacent, and joined by e. The degree of a vertex v is the number of edges incident to v.

The graph Kn = (V,E) with n = |V | vertices, where each vertex u is adjacent to every other

vertex v (∀u,v ∈V)(u 6= v→{u,v} ∈ E) is called the complete graph.

A variant data structure, the directed graph, is formed from a set V of vertices and a set

E of ordered pairs (rather than unordered two-element subsets) of vertices. In this kind of

graph, the edge e = (u,v) has source u and target v. Though there is substantial research

on, and many applications for, directed graphs, in this thesis we will assume that graphs are

undirected except where specified.

Within this document, we will use the term vertices exclusively to avoid ambiguity with

the components of the GLuskap networked display system as described in Sections 3.1.3

and 4.2.3.

An ordinary graph can be represented equivalently as a list of vertices and a list of

edges, an adjacency list, or a two-valued adjacency matrix. Figures 2.1, 2.2, and 2.3 are

equivalent representations of the same graph.

These representations are precise and unambiguous, and it is clear to see how they form

the basis for common data structures used to represent graphs for processing by algorithms

and applications. They are less accessible, though, to comprehension by the human reader.

We therefore introduce a fourth representation: an example of a graph drawing equivalent

to the three previous representations is given in Figure 2.4.

The advantages of this visual representation in a cognitive context are obvious. By rep-

resenting the vertices as circles and drawing lines connecting adjacent vertices, we produce

a node-link diagram. All the information present in Figures 2.1, 2.2, and 2.3 is preserved,

and the relationships between individual vertices are clearly visible—as is the overall struc-

8

V : v1,v2,v3,v4,v5,v6
E: {v1,v2},{v1,v3},{v3,v2},{v3,v4},

{v4,v5},{v4,v6},{v5,v6}

Figure 2.1: Example Graph: Vertex and Edge List

v1: v2,v3
v2: v1,v3
v3: v1,v2,v4
v4: v3,v5,v6
v5: v4,v6
v6: v4,v5

Figure 2.2: Example Graph: Adjacency List

v1 v2 v3 v4 v5 v6
v1 – 1 1 0 0 0
v2 1 – 1 0 0 0
v3 1 1 – 1 0 0
v4 0 0 1 – 1 1
v5 0 0 0 1 – 1
v6 0 0 0 1 1 –

Figure 2.3: Example Graph: Adjacency Matrix

Figure 2.4: Example Graph: Node-Link Diagram

9

ture of the graph, that of two groups {v1,v2,v3} and {v4,v5,v6} connected by the single

edge {v3,v4}.

Ware [War04, p. 23] claims that data, in general, can be divided into entities and

relationships; entities are the objects we are interested in and their context is formed of

the relations between them. What constitutes an object is subject to definition on a case by

case basis. For example, a hockey player is an object; so too are a hockey team and the

city they play in. In software engineering, a software program, a specific use case, and a

data table may all be conceptual objects at different levels of the design process. As long

as information can be structured into objects and connections between them, this approach

is valid. Object-oriented programming techniques and the languages that support them

represent a formalization of this paradigm, though in many cases the relationships between

objects are not well-defined in programming language structures.

Even if we stop short of attempting to fit all possible data sets into the object-relationship

paradigm, it is clear that a great number of real-world scenarios lend themselves to repre-

sentation and analysis as graphs. Graph drawing therefore provides a useful infrastructure

for the visualization and cognitive comprehension of these data. Continuous lines between

objects represent the abstract idea of “connectedness” in a powerful way, creating concep-

tual linkages that dominate those induced by simple proximity or similarity of colour, size,

or shape [PR94].

2.1.1 2D Graph Drawing

When used for data visualization, the elements of a graph drawing form a visual grammar

(that is, a framework for interpreting the symbols of a diagram) capable of expressing

relationships both simple and complex. The overwhelming majority of research in the area

of graph drawing concerns two-dimensional drawings in the plane. This is the most natural

10

context for communicating ideas—we are surrounded by written and illustrated materials in

planar forms. As we will discuss in Section 2.2.1, the human visual system is well-adapted

to extracting information from two-dimensional representations, the three-dimensionality

of the natural world notwithstanding.

What makes a good drawing algorithm? Graph drawing algorithms can be assessed

as to the “comprehensibility” of the drawings they produce—a “good” drawing should

be easy to read accurately. This is obviously a difficult concept to define precisely, but

Sugiyama [Sug02] has compiled a list of drawing rules based on the criteria of Batini et

al. [BFN85] produced by the analysis of diagrams constructed by human designers in actual

use. Sugiyama divides this list into structural rules and semantic rules.

Structural rules are concerned with the expression of graph-theoretic properties, in-

cluding the minimization of edge crossings and edge bends, the accurate representation

of symmetries and isomorphic subgraphs, and the minimization of total drawing area and

total edge length. Semantic rules are imposed by the user or attributed properties of the

graph elements, including rules about placement of specific vertices relative to each other

or relative to the drawing area (for example, placing specified vertices near the center of

the drawing).

From this perspective, the task of a graph drawing algorithm is to solve a priority ranked

set of optimization problems derived from some set of these structural and semantic rules.

Some algorithms are optimized for, or even restricted to, drawing specific classes of

graphs; for example, there is a great deal of literature on tree drawing algorithms. Other

algorithms make compromises in an attempt to maximize their suitability for large classes

of graphs. Many physics-based or energy-minimization models fall into this category; for

examples, see [FR91, DH96, Noa03].

Di Battista et al. [BETT99] and Kaufmann and Wagner [KW01] provide comprehensive

11

coverage of the established methods and algorithms for drawing a number of classes of

graphs in two dimensions.

Geometric results Two-dimensional drawings motivate the graph theory study of planarity—

whether or not a given graph can be drawn in the plane with no edge crossings. In fact,

Fáry [Fár48] establishes that all planar graphs can be drawn using straight line edges with-

out crossings. If vertices are restricted to lie on integer grid points, then it becomes possible

to assess drawing algorithms on the basis of the area of the grid required to draw the graph.

The area is typically calculated relative to the number of vertices in the graph (n), and rep-

resents the size of a rectangular bounding box with sides parallel to the coordinate axes

which completely encloses the graph drawing.

De Fraysseix et al. [dFPP88, dFPP90] and Schnyder [Sch90] independently prove that

all planar graphs can be drawn on a grid of size O(n2). This bound is tight (i.e. Θ(n2))

for some families of planar graphs. For other classes of planar graphs, the area can be

improved asymptotically—for example, rooted trees of constant degree have a straight-line

downward grid drawing in area O(n log2 n) [SKC96], and complete, AVL, and Fibonacci

trees can be drawn under the same conditions in area O(n) [CP95, Tre96].

2.1.2 3D Graph Drawing

The capability of computer graphics systems to create and display pseudo-realistic syn-

thetic objects and virtual three-dimensional spaces is well established. Three-dimensional

display techniques are used in industry for visualization and interactive design. The ex-

tension of graph drawing in computer science to three dimensions is therefore a natural

progression.

We continue from the previous topic by considering three-dimensional integer grid

drawings. The fundamental requirements that vertices be placed on integer grid points

12

and that edges must not cross are preserved. Rather than measuring the area of a two-

dimensional bounding box of a drawing, we must now determine the size of a drawing

as the volume of a rectangular prism (with all edges parallel to the coordinate axes) large

enough to enclose the entire drawing.

Integer grid drawings Cohen et al. [CELR97] present the “moment curve” algorithm,

which provides a straight-line crossing-free integer grid drawing in three dimensions of

any graph, in volume O(n3). They additionally prove that the complete graph Kn has the

volume bound Ω(n3), indicating that the bound is tight for unrestricted ordinary graphs.

Better results can be obtained for restricted classes of graphs; in particular, they prove that

complete bipartite graphs can be drawn in volume O(n2).

Calamoneri and Sterbini [CS97] follow up Cohen et al. by establishing a lower vol-

ume bound of Ω(n
√

n) for k-colourable graphs (for fixed k ≥ 2), and provide a three-

dimensional drawing algorithm for 2-, 3-, and 4-colourable graphs in volume O(n2). They

hypothesize that all k-colourable graphs can also be drawn in volume O(n2). Pach et

al. [PTT97] prove this conjecture, and also show that O(n2) cannot be beaten, closing

the gap between the lower bound of Calamoneri and Sterbini and the established upper

bound for this class of graphs.

A linear volume result in three dimensions (O(n)) is shown by Felsner et al. [FLW03]

for all prism-drawable graphs. These are graphs which can be drawn without crossings by

placing vertices along the spines of a regular three-dimensional triangular prism, where the

edges are constrained to lie on the facets of the prism. All outerplanar graphs are prism-

drawable, though not all planar graphs are prism-drawable. Dujmović and Wood [DW04]

significantly show that all planar graphs can be drawn with an upper bound of O(n
√

n)

volume. A gap remains between this result and the trivial lower bound of Ω(n) for planar

graphs which have O(n) vertices and O(n) edges; this is an important open problem in the

13

field of three-dimensional graph drawing.

Bent edge results Improved volume bounds can also be obtained if we relax the straight

line edge constraint. Morin and Wood [MW04] define a polyline grid-drawing as having

vertices placed at integer grid points and edges represented as a sequence of straight line

segments. The bend points of these polyline edges are also constrained to occupy integer

grid points. Discrete polyline edges must not intersect each other. Morin and Wood define

a b-bend drawing to be a polyline drawing with at most b bends per edge—note that a

straight-line drawing is exactly a 0-bend drawing.

Even if we allow an unlimited number of bends, Bose et al. [BCMW04] show that the

Ω(n2) lower bound of Pach et al. [PTT97] still holds for all grid drawings of Kn. Dyck et

al. [DJN+04] further demonstrate that this lower bound is achievable with a maximum of

two bends per edge. They also propose a 1-bend drawing algorithm, but without asymptotic

improvement over the 0-bend O(n3) case.

Morin and Wood [MW04] develop a novel algorithm for 1-bend drawings, lowering

the upper bound to O(n3/ log2 n). Devilliers et al. [DEL+05] recently developed a new

algorithm based on the Morin and Wood construction that reduces the upper volume bound

for 1-bend drawings further still to O(n2√n), though a gap still remains between this result

and the Ω(n2) lower bound.

Orthogonal drawings There has been considerable investigation of orthogonal grid draw-

ings in two dimensions [BETT99, Ch.5], in which edges are constructed from a sequence

of horizontal and vertical line segments. This field of study is motivated in part by appli-

cation to component placement issues and circuit routing in VLSI design [Lei80, KvL85]

as well as aesthetic preference for rectilinearity in diagram construction [BRT84, BFN85,

Tam85, NT90].

14

Three-dimensional orthogonal graph drawings can be considered a subset of polyline

grid drawings, where edge segments are constrained to grid lines (parallel to one of the

coordinate axes at integer grid intervals). These have been studied in depth and several

results pertain.

If vertices are represented by points in three dimensions, it is trivial to show that only

graphs with maximum degree six can be drawn orthogonally without crossings: there are

only six “faces” on which incident edges can contact each vertex. Orthogonal drawings of

graphs of higher degree can still be made without crossings if vertices are represented as

three-dimensional boxes or line segments spanning multiple grid points [BSWW99, PT99].

A lower bound for the volume of three-dimensional orthogonal drawings of arbitrary

degree (with vertices represented by boxes) is established by Biedl et al. [BSWW99]. This

lower bound for drawings of Kn with an arbitrary number of bends per edge is Ω(n2√n); a

matching upper bound is also shown if 3 or more bends per edge are permitted.

Eades et al. [ESW00] describe a set of 5 drawing algorithms for three-dimensional

orthogonal graph drawings with maximum degree six. If 7 bends per edge are allowed, a

drawing with volume O(n
√

n) is produced. Similarly, the 6-bend drawing requires volume

O(n2), the 5-bend drawing O(n2√n), and for 3 bends per edge, O(n3) volume is used.

Their fifth algorithm provides a 3-bend drawing in volume O(n2), but only for graphs of

maximum degree 4.

The O(n
√

n) volume for the 7-bend case is tight: Kolmogorov and Barzdin [KB67] and

Rosenberg [Ros83] prove a lower bound of Ω(n
√

n).

Papakostas and Tollis [PT99] provide a linear time algorithm for a 3-bend orthogonal

drawing of graphs of maximum degree six in volume O(n3), with a significant constant

factor improvement over the 3-bend layout of [ESW00]. They also provide a two-bend

orthogonal drawing algorithm for graphs of arbitrary degree (using solid boxes to represent

vertices). Both algorithms are incremental such that vertices are added to the graph on-line.

15

Nomura et al. [NTU05] show in a recent paper that all outerplanar graphs with maxi-

mum degree six and with no triangles have three-dimensional orthogonal drawings without

bends.

2.2 Visualization and Interaction

While a thorough treatment of human visual perception, data visualization practices, and

interactive systems cannot be accomplished within the scope of this thesis, this section will

attempt to introduce concepts relevant to the work presented in later chapters. Readers are

referred to Ware’s Information Visualization [War04] for a more comprehensive study of

these topics.

2.2.1 Basics of Perception

An effective model for studying human visual perception is presented by Gibson [Gib86].

The environment around us can contain multiple sources of light and countless objects that

absorb, reflect, and scatter light. In obtaining information about that environment and the

objects within it, though, an individual observer is restricted to the rays of light which arrive

at a single viewpoint from all directions. The information contained in the structure of these

light rays and the way in which they change over time constitutes what Gibson calls the

ambient optical array. This limited subset of the total light rays present in the environment

nonetheless allows the observer to extract useful information about their surroundings.

Ware [War04] suggests as a metaphor the projection of a portion of the ambient optical

array into two dimensions as though it were observed through a rectangular pane of glass.

Isolated in this way, a portion of the array can be modeled and simulated by computer

graphics techniques, allowing us to create virtual spaces with varying levels of naturalistic

behaviour and appearance.

16

Figure 2.5: La Trahison des Images (Magritte, 1929)

The ability of the brain to effectively interpret a two-dimensional projection in this way

is shown by our ability to recognize objects portrayed in photographs, illustrations, and

even line drawings. Magritte’s famous painting La Trahison des Images (“The Treason of

Images”) (Figure 2.5) provides a clever yet succinct demonstration of this principle—as the

caption (“This is not a pipe”) points out, the image is not a pipe (rather, it is of a pipe), yet

the object is easily recognized.

Though the evolutionary background for the human visual system is entirely based

on extracting useful information about objects in the nearby environment, the adaptive

neural mechanisms which have developed to perform these perceptive tasks are capable

of effectively interpreting information presented with varying degrees of abstraction. It is

this capability that makes the entire field of visual design and information visualization

possible.

It is important to keep in mind that most of the perceptual mechanisms of the visual

system operate pre-consciously. We consciously perceive, recognize, and interact with

objects, not patches of light in the visual field. Even such fundamental concepts as colour

and brightness are pre-processed heavily. Designed by evolution to ascertain the properties

of objects from the characteristics of their surfaces by way of reflected light, and to function

17

effectively in a wide variety of circumstances, the human visual system1 discards most

information about the quality, quantity, or absolute wavelength of light in the environment.

The shape of objects The three-dimensional shape of individual objects is understood to

be perceived using a combination of factors. The silhouette of the object provides a gen-

eral indication of the shape, and Marr [Mar82] suggests that the visual perception system

incorporates certain assumptions that allow the three-dimensional shape of objects to be

extrapolated from silhouette information.

The way that light falls on and is reflected by objects also reveals their shapes. As

mentioned, light in real environments is created and altered by reflection and transmission

countless times before it reaches the observer. Ware [War04, Ch.2] describes a simplified

model of surface illumination and shading that is useful in understanding how light interacts

with many common types of surface.

In constructing visual simulations, use of simplifications like this may actually be more

productive than attempting to model all possible light interactions in a scene, as it mirrors

our understanding of the assumptions the visual system of the brain makes in interpreting

the surface characteristics of objects. This model identifies four factors that influence the

amount and quality of the light reaching the observer from a point on an object’s surface:

Lambertian shading Lambertian scattering takes place when light penetrates the surface

of an object and interacts with the pigments contained therein. Some wavelengths

of the light are absorbed, and others are reflected in all directions from the surface

of the object. This produces the characteristic colour of the pigmented surface and

the smooth shading patterns typical of simple three-dimensional graphics displays,

which reveal the general curvature and angular features of objects and surfaces. The

1And the visual systems of most, if not all, animals as well.

18

amount of light reflected in this way depends on the orientation of each point on a

surface relative to the light source.

Specular highlights Specular highlights are caused by light from some source being re-

flected directly by the surface without reaching the pigments contained within. This

light is reflected at, or very close to, the angle of incidence (like a mirror), and has

the colour of the illuminant. Specular reflections can highlight minor surface features

that “catch” the light, but these may require direct illumination from a specific angle

or range of angles to be visible.

Ambient light Ambient light models the character of the light that has been reflected by

surrounding objects, rather than coming directly from a specific light source. In

computer graphics simulations ambient illumination is often simplified to a constant.

Cast shadows Objects cast shadows on each other and on themselves, in the opposite di-

rection from an illuminant. Shadow casting can reveal minor details, similar to spec-

ular highlights, and also contributes to perception of the relative size and positioning

of multiple objects, though it is dependent on the position and orientation of the light

source.

Similar assumptions allow the visual perception system of the brain to infer shape-from-

shading. It integrates shape-from-shading data with the silhouette contour of the object.

Surface textures can also provide shape cues, especially if the textures form linear or grid-

like patterns. The use of contours on geographic maps to indicate terrain features and

elevation is a common example.

Three-dimensional scenes As mentioned earlier, objects move through the ambient op-

tical array according to physics-derived rules. In particular, movement of the observer

19

creates visual flow fields: as the observer moves forward, objects in the center of the field

of view tend to increase in size and move toward the edges of the field before disappear-

ing. These flow patterns are interpreted by the visual system and contribute to a sense of

movement through the scene.

Similarly, the visual system uses a set of rules to draw conclusions about the depth

(distance from the observer) of objects. These are known as depth cues [War04, Ch.8].

Consider these examples:

Occlusion One object placed in front of another (from the point of view of the observer)

will occlude the more distant object.

Size gradient Identical objects placed at different distances from the observer will appear

to be different sizes, the nearer objects occupying a proportionally larger area of the

visual field.

Linear perspective Parallel lines will converge toward the horizon.

Motion parallax The perceived motion of objects perpendicular to the direction of travel

of an observer in motion: nearer objects move faster across the visual field than those

more distant.

Ware [War04] separates depth cues into three categories based on the observing con-

ditions required. Many cues can be correctly interpreted even from still images (e.g. lin-

ear perspective, occlusion, object size gradient); these are called monocular static cues.

Monocular dynamic cues (such as motion parallax) require an animated display, and binoc-

ular cues make use of the differences between the views captured simultaneously by two

eyes separated in space.

The majority of identified important depth cues are classified as monocular static. This

speaks to the power of photographs and illustrations to convey the appropriate ideas of

20

space and relative object positions. For the visualization designer, this also means that

much can be accomplished even with little in the way of graphics hardware, if the cues

included are chosen carefully. Occlusion is a powerful indication of whether one object is

nearer than another, yet if the two objects do not overlap in the visual field it is useless.

Linear perspective and the texture gradients formed on ground surfaces establish a depth

gradient through a large area, but are less specific for nearby objects, especially if the

objects do not contact the ground directly or cast shadows on it. While not all depth cues

must be used in every visualization context, those that are implemented should be chosen

to support and reinforce each other.

2.2.2 Perception and Computer Graphics

Moving beyond the static display of still images with the use of dynamic graphic displays

and specialized hardware, we can make use of the powerful dynamic and binocular depth

cues mentioned in the previous section. We describe the advantages and considerations of

these techniques.

Structure from motion The human visual system is capable of integrating visual in-

formation over time, and using motion over time to augment depth perception. Two major

depth cues fall under structure-from-motion: motion parallax and kinetic depth effect. Both

are amenable to simulation in a computer graphics display.

Motion parallax is the effect briefly described earlier as the perceived motion of objects

when the observer is in motion. Looking perpendicular to the direction of travel, a velocity

gradient is seen, with objects nearer to the observer moving faster than those closer to

the horizon. As the observer looks forward along the direction of travel, a different kind

of parallax field is observed, where objects closer to the center of the field of view move

slowly toward the edges of the field of view, and move more quickly as they approach the

21

a,c

b d

screen Left eye view

a b

Right eye view

c d

Figure 2.6: Stereoscopic Depth Cue Example (Adapted from [War04])

edges before disappearing from view.

The kinetic depth effect, described by Wallach and O’Connell [WO53], occurs as a

result of a visual system assumption that objects are rigid in 3D space. When an object is

smoothly rotated in space, its three-dimensional shape is rapidly perceived. Wallach and

O’Connell use the example of the shadow cast on a flat surface by a bent wire: an observer

seeing the shadow will perceive only a bent line, but if the wire is rotated, the observer will

be able to discern its three-dimensional form.

Stereoscopy Stereographic three-dimensional viewing is often described as “real 3D.”

Stereoscopy is indeed an effective depth cue and is useful for many visualization tasks.

While it has limitations, we have decided it worthwhile to include as a major feature of the

GLuskap package and therefore describe the principles and issues associated with stereo-

graphic visualization here.

Figure 2.6 shows a simple stereo display showing two vertical lines, one of which is

at the same depth as the screen and the other situated some distance behind it. The eyes

22

in the example are fixated on the nearer line. The screen disparity between the two lines

is the difference between the distance a–b and the distance c–d; this is used by the visual

system of the brain to infer the angular disparity between the two angles α and β. By

trigonometric methods,2 the brain then perceives the two lines as being at different depths.

The two images become fused in the visual field (the observer perceives two lines, not two

distinct pairs of lines).

If the disparity between the left and right views is too great, the visual system is unable

to fuse them as a single image with depth perception, and diplopia (or “double vision”)

occurs. The region within which objects can be effectively fused, relative to the observer

and the screen, is known as Panum’s fusional area and is shaded in the figure. The fusion

of objects which are out of focus (due to the fixation of the eyes on another object at a

different distance) or in the peripheral visual field is easier for the brain to accomplish—

however computer graphics displays typically do not simulate focal depth of field, leading

to out-of-depth objects being displayed in sharp focus and thus prone to diplopia. Patterson

and Martin [PM92] discuss some of the factors regulating the size of the fusional area.

The mechanisms controlling the convergence of the eyes to fixate on an object of in-

terest, and those controlling the focusing of the lenses are very tightly linked. In a natural

setting, this ensures the rapid adaptation of the eyes, maintaining proper focus while track-

ing moving subjects or scanning many objects in rapid sequence. While stereographic

computer graphics displays require vergence accommodation to fixate on objects at differ-

ent depths in a virtual scene, the entire display lies at a uniform focal depth. This brings

the linked systems into conflict, as the vergence accommodation cues a change in focal

depth which must be suppressed in order to maintain proper focal accommodation. This

vergence-focus problem can cause eyestrain especially if the vergence disparities in the

2The trigonometric calculations are obviously not consciously performed—rather, this information is pro-
cessed preconsciously by the visual centers of the brain.

23

scene are large and the system is used for extended periods of time.

While high-performance 3D graphics adapters capable of rendering detailed scenes at

high resolution have become relatively inexpensive commodity items, stereographic dis-

play requires specialized hardware, including so-called “workstation” graphics adapters,

LCD or polarized glasses, and multiple projector systems. More information on the partic-

ular requirements for stereographic 3D will be found in the following chapters.

2.2.3 Interactive Systems

Interactive data systems operate in terms of feedback loops: the system presents some data

representation, the user responds by modifying the data or the parameters of the representa-

tion, and the system updates the display accordingly. Ware [War04, Ch.10] explores some

of the principles and models used in construction and analysis of interactive visualization

systems. These can be extended in most cases to apply to interactive graph drawing soft-

ware, where we are interested not only in visualizing existing data sets but also creating

and modifying graph drawings.

Feedback loops Modeling the human-computer interaction interface as a nested set of

goal-directed loops echoes the layered processing model of the visual perception system

of the brain [War04, Ch.1]. At the highest level, a goal is specified. Through successively

lower levels, the task of achieving this goal is broken down into sets of more easily achiev-

able sub-problems, until at the lowest level individual actions are taken towards completing

the task. Each level of cognitive processing operates on a shorter time base than the level

above it.

Integrating computer systems into the problem-solving process creates loops that pass

back and forth between the user and the interactive system. Ware characterizes the lowest

level of interaction as the data manipulation loop, where individual objects are selected and

24

altered. This loop has the shortest timebase; the user issues commands and feedback should

be given as rapidly as possible, for delays at this level are multiplied by the frequency with

which these simple actions take place. Even a fraction of a second of lag per operation can

be disruptive to the user.

The exploration and navigation loop structures the interaction with larger data sets. The

visual working memory of the average user stores about four simple objects or features at

a time, but aggregating multiple features as objects themselves allows four times as much

data to be held in this way [LV97]. For working with larger data structures, the realization

of semantic relations between objects (allowing aggregation) and the formation of mental

maps and models must be facilitated by the interactive system.

At an even higher level of abstraction, and on a correspondingly longer time base, is

the general problem solving loop. As the investigation progresses, data may be added or re-

processed to emphasize different attributes, and new interactive tools may be added to the

software to allow increased user freedom. Cycles of exploration and interaction are then

re-launched and the investigative process continues. The goal in designing such cognitive

visualization systems is that they will be useful tools for expanding the capacity of users to

solve problems.

Bederson [Bed04] characterizes the optimal experience for skilled users as “flow”—

when a tool is used naturally as an extension of the user’s body without distracting from

the task at hand. Users are able to focus on the work and maintain responsive control

over the operation of the system. Timely response speed (the faster the better) and clear

feedback is essential to maintaining a sense of “flow”.

A similar structure of feedback loops is an effective model for the interactive con-

struction, analysis, and manipulation of graph drawing algorithms. In the middle layers

of the structure, there is not only a process of exploration and navigation but also direct

and indirect manipulation of the underlying data: graph structures and geometric drawing

25

representations thereof.

Fitts’ law and interface lag At the data manipulation level, selecting objects on a two-

dimensional display or in space is a fundamental and frequently occurring task in many

applications. Fitts’ law is a formulation of the time taken to select a target with a fixed

position and size.

Selection time = a+b log2

(
D
W

+1.0
)

where D is the distance to be covered to reach the center of the target, W is the width of the

target, and a and b are empirical constants [War04]. The Index of Performance (IP), 1/b,

is measured in “bits per second.” While it is specific to individual users, typical values are

about 4 bits per second. The difficulty of a given task is estimated by the logarithmic term

log2 (D/W +1.0), in units of “bits”—larger, closer targets can be selected more quickly

than smaller targets further away.

Ware and Balakrishnan [WB94] adapted Fitts’ law to incorporate the effects of both

system lag (time from input device movement to display feedback) and human response

time:

Mean time = a+b(Human Time+Machine Lag) log2

(
D
W

+1.0
)

Ware points out that for a constant amount of latency (as is typical in most interactive

systems, especially those invoking the processing overhead of three-dimensional input de-

vices and stereoscopic displays), the net effect of the lag increases with small targets and

can make precision selection tasks more difficult. Reducing the end-to-end latency of the

visualization system and increasing the effective size of selection targets are two possible

strategies to aid the user in these tasks.

Fitts’ Law effects also apply to 3D interactive systems as well as 2D interfaces, though

they have not been precisely quantified in the three-dimensional case [WB94].

26

2.3 Interactive 3D Graph Drawing

2.3.1 Software Products for 3D Graph Drawing

In the last 10 years, computer technology has advanced to the point where the real-time

visualization of 3D graphics is possible with inexpensive commodity hardware. This has

greatly facilitated the investigation of three-dimensional graph drawings. Software tools

for research in this area fall into three rough categories: general purpose 3D modeling, spe-

cialized 3D graph visualization software, and general purpose 3D graph drawing software.

General purpose 3D modeling software A large body of software exists for the cre-

ation and visualization of general three-dimensional objects and scenes. Included in this

category are industrial CAD/CAM and drafting packages such as AutoCAD; artistic graph-

ics and animation tools including 3D Studio MAX, Lightwave, Blender, and POV-Ray; and

VRML editing and viewing software. Many of these software packages can be used to

produce high quality visualizations of three-dimensional graph drawings. However, they

typically lack the interface functionality and high-level data semantics to be effectively

used for the interactive creation and manipulation of graph drawings, or the programmatic

implementation of graph drawing algorithms.

Specialized graph drawing software There exists a large market for graph visualiza-

tion software, primarily focused on two-dimensional drawings and constructed to meet the

needs of disciplines as diverse as computer network management, social science research,

and molecular biology. Tom Sawyer Software leads the industry in this area, focused ex-

clusively on providing commercial graph visualization software. Less common are appli-

cations using three-dimensional graph drawing methods, which we speculate is due to the

more recent emergence of the field and the technological requirements for displaying and

27

manipulating three-dimensional objects.

One such visualization product is the Tulip package, described by Auber as a “huge

graph visualization framework” [Aub04]. Optimized for use with graphs containing up

to 1,000,000 elements, Tulip implements algorithms for displaying general graphs, trees,

and clustered graphs in two and three dimensions, as well as interactive clustering and

additional techniques appropriate to analysis of large data sets. It is freely available with

source code and is designed to be extensible for a variety of application domains. Tulip is

written in C++, using the Qt and OpenGL libraries for interface.

An even more specialized example is CrocoCosmos, “part of a comprehensive exper-

imental software analysis tool set to support analysis, comprehension, and quality assess-

ment of large object-oriented programs” [LN04]. CrocoCosmos maps program entities

(methods, attributes, classes, files, and subsystems) onto vertices of a graph, and hierarchi-

cal organization and relations between entities are mapped onto edges.

By drawing on information visualization principles, these graph entities are attributed

with metrics corresponding to the size, degree, etc. of the program components they rep-

resent. The specific representation functions used are under the control of the user. Force-

directed (energy-based) methods are used to produce a three-dimensional layout. This is

because of the general amenability of such methods to the graphs which will be created by

the mapping algorithms, without any prior knowledge of specific graph theoretic properties

that would allow the use of optimized layouts.

CrocoCosmos supports a high-performance graph viewing application that uses OpenGL

for display.

General purpose 3D graph drawing software 3DCube by Patrignani and Vargiu [PV97]

can be described as a general-purpose graph drawing package, though it primarily supports

the development of orthogonal graph drawing algorithms. It also includes the straight-line

28

“moment curve” algorithm [CELR97]. The interface provides a three-dimensional perspec-

tive view and allows the user to specify the appearance of nodes and edges. Graph drawing

algorithms can be animated, and selected views of individual three- dimensional drawings

can be saved and recalled. 3DCube is written in C++ using the Motif and graPHIGS inter-

face libraries.

The OrthoPak 3D software was developed at the University of Lethbridge to work with

3D orthogonal grid drawings of graphs [CEGW98]. It supports graphs of arbitrary vertex

degree (using three-dimensional boxes to represent vertices) as well as graphs with maxi-

mum vertex degree constrained to 6 (required to avoid crossings when vertices are repre-

sented by points). Several 3D orthogonal drawing algorithms are implemented. Output is

produced in VRML format for 3D viewing. The LEDA libraries are used for interface.

Dwyer and Eckersley [DE04] have developed the WilmaScope package for three-dimensional

graph editing and visualization, including directed graphs and graphs with clustered ver-

tices. It provides several force-directed 3D layout algorithms, as well as support for using

the Graphviz DOT program for layered 2D drawings [EGK+04]. An interface for writing

additional “layout engines” is provided. Customizing the appearance of graph elements

and the parameters of the layout algorithms is supported. WilmaScope is written in Java

and uses the Java3D library for interface.

2.3.2 Historical GLuskap

As of September 2004, the GLuskap package had been developed at the University of

Lethbridge as a general-purpose three dimensional graph drawing package, capable of ma-

nipulating and drawing arbitrary undirected graphs. It will henceforth be referred to as

“GLuskap 2.4” where necessary to differentiate it from the enhanced GLuskap system and

software which is described in the following chapters.

29

Motivation and capabilities GLuskap is designed to assist in three dimensional graph

drawing research by allowing the interactive construction of graph layouts with the vertex

positions specified exactly. GLuskap includes support for edges defined by polylines in

three dimensions, or “bent edges”, with the position of bend points specified precisely.

This allows the construction of volume-bounded layouts as described in Section 2.1.2

including the straight-line layout of Cohen et al. [CELR97], the 1-bend layouts of Morin

and Wood [MW04] and Devilliers et al. [DEL+05], and the 2-bend layout of Dyck et

al. [DJN+04].

Import and export with the standard GML and GraphML file formats (described in [Him96]

and [BEL04] respectively) is supported. Capture and export of perspective views of graph

drawings directly from the user interface is possible, while high-quality raytracings are

possible through export to POV-Ray scene description files which can be rendered at high

resolutions. While production of vector (EPS) format drawings using the technique de-

scribed by Kilgard [Kil97] is possible due to GLuskap’s use of OpenGL, it has not yet been

implemented.

Implementation The code-base has been rewritten and significantly revised since its ini-

tial release in 2003 [DJN+03]. GLuskap 2.4 (and all subsequent development) is written in

Python, and makes use of the OpenGL and wxPython libraries for user interface.

The Python language was chosen for its high-level object-oriented data structures, ro-

bust exception handling, and ease of cross-platform portability [Lut96]. As a result, GLu-

skap is developed and tested on Microsoft Windows, Linux, and Apple OS X platforms

with no change in functionality. As well, Python’s straightforward syntax makes it ideal

for implementation of graph drawing algorithms in a readable way. High CPU load calcu-

lations that would suffer under the performance constraints of an interpreted language can

be delegated to modules written in C or C++ [ADH+01, GMHW03].

30

Avenues for expansion The GLuskap 2.4 software package serves as the base upon

which the GLuskap system described in the following chapters is built. A plug-in script-

ing system has been added to allow graph algorithms to be executed within the GLuskap

interface. The stereographic 3D output and user input subsystems have been expanded

considerably to support an immersive workspace for the construction and visualization of

three-dimensional graph drawings, following the principles of interactive visualization sys-

tems.

31

Chapter 3

Design

In this chapter, the design requirements and considerations for the construction of an inter-

active virtual reality system are described. The main focus is on the particular requirements

of interactive graph drawing for abstract graphs, making the hardware system both effective

and transportable, and ensuring the flexibility and portability of the software components.

3.1 Software System

3.1.1 GLuskap Visualization Enhancements

The original GLuskap software has been augmented and altered for use in an interactive

virtual reality system, following established principles of visualization and interaction.

Textured objects Gibson’s ecological optics maintains that natural objects are perceived

as surfaces, and that these surfaces necessarily have texture—the “structure of the surface,”

as it appears to the viewer [Gib86]. Perfectly uniform smoothly shaded objects do not exist

in the real world, their appearance in many virtual environment simulations and computer

models notwithstanding. Not only does the mere presence of a surface texture lend realism

32

to a virtual object, characteristic textures can convey information about the attributes of the

object to the user. The contours of a regular pattern are also useful cues to the surface shape

of an object.

Stereographic 3D display provides a further motivation to use textured objects. Recall

that stereoscopic depth is resolved by the brain using the angular disparity between the

left and right views of the same point on a particular object (Section 2.2.2). With smooth

shading, the only features for which depth can be determined are the edges of an object.

Consider a sphere: it will be perceived as having a different depth than surrounding objects.

Inside its boundaries, though, it is equivalent to a disc. Adding visible texture to virtual

objects provides additional points of reference on the surface that can be resolved by the

viewer to determine the 3D shape of the object.

To this end, the rendering system in GLuskap applies simple regular texture maps to all

three-dimensional objects in the virtual space.

Rapid zooming To focus on one part of a graph drawing, it is useful to be able to move

rapidly through the virtual space towards some target. It is also useful to be able to identify

some named (yet possibly out of view) element of the graph drawing and bring it into view.

These tasks are facilitated by the inclusion of a “rapid zooming” feature, based on the Point

of Interest movement interface developed by Mackinlay et al. [MCR90].

In GLuskap, selecting an element of the graph drawing (vertex or edge) and activating

the rapid zoom mechanism causes the viewpoint to move quickly and smoothly towards

the selected target, terminating with the object of interest highlighted and centered in the

display. The rate of travel through the virtual space is logarithmic, slowing down as the

viewpoint approaches the selected target. In contrast with simply jumping to a new view-

point, zooming in this way has the advantage of preserving the user’s sense of presence and

augmenting the user’s mental map of the virtual space.

33

Embedded three-dimensional cursor To facilitate actions in the three-dimensional vir-

tual space, including selecting, positioning, and relocating graph objects, an “embedded”

pointer has been added to the GLuskap interface to be used with three-dimensional input

devices. Unlike the windowing system cursor which operates in two dimensions, between

the user and the three-dimensional perspective view, the embedded pointer is incorporated

into the virtual space with a real three-dimensional position and orientation. Movement and

positioning of the cursor is relative to the viewpoint and view direction, so that the cursor

remains in view even if the perspective changes.

3.1.2 GLuskap Stereographics Support

In a conventional (monocular) 3D perspective display, a viewpoint, view direction (alter-

nately “view plane normal” or VPN), and angular field of view are established inside the

virtual environment and used to produce a rendered display of the virtual scene (Figure 3.1).

Movement of the user inside the virtual environment is simulated by moving the viewpoint

and changing the orientation of the VPN [SWN+03].

View

Point

VPN

Field of View

Figure 3.1: Conventional 3D perspective display

34

To enable stereographic 3D display, it is necessary to simultaneously produce two ren-

dered views of the virtual environment: one for each of the left and right eyes, as shown

in Figure 3.2. The perspective for each of these views is shifted perpendicular to the VPN,

corresponding to the binocular separation of the eyes. As well, the VPN for each view is

rotated inward slightly to simulate the convergence of the eyes on objects of interest, re-

sulting in a virtual convergence plane, at which virtual objects will appear to be at the same

depth as the physical screen.

View

Point

Right Field of ViewLeft Field of View

VPN

Convergence Plane

Vergence Angle

Stereo Separation

Figure 3.2: Stereographic 3D display

The GLuskap software supports two general modes of stereographic display: anaglyphic

(red-blue) separation applied in software, and OpenGL stereography requiring specialized

hardware.

Anaglyphic stereo For maximum hardware compatibility, GLuskap supports stereographic

display using anaglyphs [SM03]. In this mode, the left and right views have red and blue

filters applied, respectively, in software. Stereoscopic depth effects can be therefore per-

35

ceived while using a standard computer monitor or a single data projector in conjunction

with readily available and inexpensive red/blue filter glasses.

Anaglyphic stereography does impose significant restrictions on the use of colour for

semantic purposes in the display. The use of inexpensive glasses can also result in crosstalk

(diminished left/right channel separation) due to mismatched colour calibration between

the display device and the particular colouration of the filter elements in use.

OpenGL quad-buffered stereographics GLuskap also supports stereography using the

standard OpenGL interface, called quad-buffering [SWN+03]. Four frame buffers are used

so that the standard double-buffered drawing technique can be used with both the left and

right view being held in video memory simultaneously. This requires a video adapter with

the appropriate hardware capabilities. Typically, an adapter of this type will produce active

(or “frame-sequential”) stereographics requiring LCD shutter glasses to view, as the display

alternates rapidly between the left and right views. Some adapters also support passive

stereographics, where both left and right views are rendered simultaneously to independent

output devices.

3.1.3 Network Rendering

To drive a large-screen projection system using dual projectors and polarized filters, as

described in Section 3.2.2, passive stereo output is required. For maximum portability, the

use of a laptop computer is desirable, yet very few laptop computers are equipped with

video hardware capable of driving two projectors simultaneously or supporting OpenGL

stereo.

Paquet and Viktor [PV04] describe the use of two laptop computers coupled by an

IEEE1394 “Firewire” link to produce passive stereographics under a similar portability re-

quirement. One computer acts as the primary node, maintaining the state of the simulation,

36

processing input, and rendering one of the stereo views. Rendering of the other stereo

view is delegated to the second computer; simulation data and synchronization are trans-

ferred over the IEEE1394 connection. This configuration is depicted in Figure 3.3, with

arrowheads indicating the direction of data flow.

Left

Right

Primary Secondary

IEEE1394

Figure 3.3: Two Laptops for Portable Passive Stereographics

In this scenario, frame-by-frame synchronization between the two computers is re-

quired to compensate for the communication delay—otherwise it is possible that the sec-

ondary “lags behind” the primary in updates to the display.

Synchronization and latency concerns To reduce the need for precise synchronization,

our alternate configuration for portable passive stereo uses a single primary node and two

secondary nodes, connected using standard 100BaseTX ethernet. Each secondary node is

responsible for producing one of the left or right perspective views. Any latency introduced

in the data flow path from the primary node to the projection display will be symmetric.

See Figure 3.4.

Distributing the production of the display images in this way necessarily introduces

some latency into the processing and display of user interaction and other updates to the

simulation. This latency must be kept to a minimum, as small amounts of delay (especially

37

in hand-pointer tracking) can make positioning and selection tasks more difficult [WB94].

Left

Right

Primary Secondary

Figure 3.4: Primary and Two Secondary Nodes for Portable Passive Stereographics

3.1.4 Interaction Principles for Large-Screen Interface

While the standard windowing interface for GLuskap includes a large number of widgets

for modifying the graph drawing and manipulating properties of the visualization, the large

screen interactive interface has been simplified considerably allowing the user to focus on

the tasks of constructing and manipulating graph drawings in three dimensions.

The active 3D pointer, described in section 3.1.1, allows the user to directly specify

positional information and move objects in three dimensions. In addition to the positional

tracking information, the particular hardware pointing device used includes 3 buttons and

a two-dimensional analog input device [Ascb]. With these control widgets, it is possible to

create a simple interface to common interaction tasks by using the 3D pointer in combina-

tion with context-sensitive menus.

Graph tasks including adding, removing, positioning, and resizing graph elements are

chosen from context-sensitive menus. A heads-up overlay provides feedback regarding the

current task, the position of the pointer, and any error conditions. The menu interface is

designed to balance the number of clicks required to perform any specific task with the typ-

38

ical use frequency for that task. Each button is assigned a function to be consistent within

the interface and to correspond to traditional conventions of windowing system interfaces

where possible. For example, the left button is used to select objects and confirm choices,

and the right button is used to activate context-specific menus.

To reduce the incidence of error in positioning graph objects, a “snap” function is pro-

vided to restrict positional input to the nearest point on a uniform three-dimensional grid.

As most three-dimensional graph drawing layout algorithms constrain vertex positions to

integer grid points, this compromise is acceptable. The snap function can be set to an

arbitrary level of granularity depending on the user requirement.

Moving the viewpoint to examine or manipulate the graph drawing from an alternate

angle is often useful. In addition to head tracking, rotation and zooming of the graph model

is linked to the two-dimensional input widget on the pointer device.

3.1.5 Plug-in Architecture for Layout Algorithms

Providing some method for graph drawing layout algorithms to be coded in software by

users motivates the construction of a “plug-in” interface for the GLuskap software. Some

previous packages have integrated a selection of algorithms into the program code [PV97,

CEGW98]. In this case, modifying the particular algorithm implementations or adding

new algorithms requires editing the core source code of the software package. This is

cumbersome in the best case and impossible in the worst case, where the source code is

unavailable due to license restrictions or lack of maintenance.

One approach would be to allow users to code algorithms in a scripting language like

Lua [IdFC03], which is designed for integration of interpreted scripting into an applica-

tion coded in C/C++. This requires establishing a “dialect” of scripting commands and

interfaces available to the user which is distinct from the interface used by the authors to

39

implement core software functionality. This may cause bugs to appear if these two in-

terfaces are not kept consistent through the maintenance and further development of the

core product. Furthermore, the capabilities of the external scripting language may limit the

scripting functionality available to the user.

As GLuskap is written in Python, though, a third option is available. User scripts can be

written directly in Python, accessing the same standard interfaces used by the core software,

while still being loaded and interpreted at run time as independent modules. Care must be

taken in developing the standard interface in a consistent and usable fashion, but this effort

is doubly rewarding: it benefits both the user writing independent scripts and the developer

integrating other components of the core product with these same interfaces.

Capabilities In a three-dimensional graph drawing application such as GLuskap, the user

is able to modify three inter-related types of data: the structure of a graph (vertices and

edges), the three-dimensional embedding of the graph (positions, sizes, and visual attributes

of the vertices and edges), and characteristics of the virtual scene and display in which the

graph is presented (position of the viewpoint, colour of the background, whether secondary

visual aids like coordinate axes are present).

An ideal plug-in scripting system should provide an interface to control all three of

these facets. Facilities should be provided to add and remove graph elements, to alter their

positional and display attributes, and to change the properties of the three-dimensional

view. The GLuskap scripting system meets all of these requirements.

Examples of plug-in scripts that could be developed using this interface include testing

for planarity or other graph-theoretic properties [BM04b], presenting specific 2D or 3D

graph layout algorithms [CELR97], or to test heuristics for optimal viewpoints of 3D graph

drawings [EHW97].

40

3.2 Hardware System

The hardware requirements for an interactive visualization system include one or more

output devices, one or more input devices, and a computer processing system to maintain

the state of the visualization while incorporating user input.

3.2.1 Display

All computer graphics systems use some kind of display device. Recent developments

in computer technology allow the use of real time interactive three-dimensional graphic

displays. Standard desktop PC monitors allow the presentation of high resolution data, and

in some cases can be used for stereographic 3D display.

When working with interactive virtual reality systems, though, it is desirable to provide

the user as much as possible with a sense of presence in the virtual environment. A head-

mounted display (HMD) that restricts the user’s view to the virtual environment and allows

the user’s head orientation to be tracked and simulated can be used to this end. It has also

been shown that the use of a large projection screen can provide an immersive experience

comparable to a HMD, and for a lower cost [PCS+00].

While a large projection screen requires a similarly large operating area, it is possible

to construct the screen and projection apparatus in such a way that they can be easily

disassembled and stored compactly when the system is not in use. The construction of

such a portable system is described by Arns [Arn03].

3.2.2 Projection Setup

Polarization and dual projection In the large screen stereographic configuration, two

projectors are used for display of both the left and right views simultaneously. To separate

the two projected views and direct them to the appropriate eyes, optical polarization filters

41

are applied to the projected images in conjunction with matched polarized glasses worn

by the user. There are two commonly available varieties of polarizing filters: linear and

circular.

Linear polarization filters can be used for this task, though their effectiveness depends

on the user’s head remaining level with respect to the alignment of the projection filter.

Inadvertent tilting of the user’s head can allow the user’s left eye to view the right view and

vice versa, diminishing the stereo depth effect.

Circular polarization filters, incorporating a quarter-wave plate in addition to the linear

polarizing element, are preferred, as they make the stereo effect robust against shifts in user

head orientation [Arn03].

Care must be taken to select a screen material that preserves the polarization of the pro-

jected images. A white wall or standard white projection screen is designed for maximum

viewing angle and will scatter the polarization on reflection and is therefore of no use for

this application. If a front projection system is to be used, a silver lenticular screen will

effectively preserve polarization [BFLR00].

A front projection system suffers from shadows being cast on the projected image by the

user if they stand between the projector(s) and the screen, as is typical for a large-screen

interactive visualization system. For this reason a rear projection system is preferred, as

in [Arn03], despite the larger operating area required. The use of a screen material that

preserves polarization on transmission is therefore required.

It should be noted that so-called “virtual rear projection” systems incorporating mul-

tiple projectors to alleviate the occlusion problem of front projection without the space

requirements of true rear projection have been developed. [SACR03]. The processing and

synchronization requirements to implement such techniques for stereoscopic 3D projec-

tion have not been investigated in the literature at this time, and were considered to be

unreasonable for the purposes of the GLuskap system.

42

Calibration of overlapping displays Whether front or rear projection is used, two pro-

jected images are viewed simultaneously on the same area of the screen, and the optical

centers of the projectors are necessarily separated by some small distance. As most data

projectors are wider than they are tall, this distance is minimized by stacking the projectors

vertically rather than placing them side by side.

If no correction is applied, the usable area of the display is restricted to the overlapping

projection area and thus requires that some of the usable pixels of each projector be wasted.

Figure 3.5(a).

If the projectors are angled inward, toward the axis of projection, the projected images

can be made to overlap more completely. This has the side effect of producing “keyston-

ing” as the axis of projection for each projector is no longer perpendicular to the plane

of the screen. Many projectors have mechanisms to alleviate keystoning effects digitally.

Figure 3.5(b).

Commercial products are also available that use optical lens shift to align the projected

images at the point of projection, though at an additional cost. Figure 3.5(c).

3.2.3 User Tracking

Tracking the position and orientation of the user further enhances a sense of presence in the

virtual environment, with the coupling of user head tracking to the viewpoint position being

particularly important. Lateral movement of the viewpoint (that is, movement parallel to

the screen plane) provides the user with depth information from motion parallax [BM04a].

3.2.4 Input Devices

Implicit in the definition of an interactive system is the means to manipulate data in real

time and have the results displayed. Historically, the GLuskap system has supported in-

43

Usable

Display

Area

(A) Overlap, No Correction

Usable

Display

Area

(B) Tilted Projectors

Usable

Display

Area

(C) Optical Lens Shift

Figure 3.5: Overlapping Alignment of Two Projectors

teraction with keyboard and two-dimensional mouse in a standard window environment

[DHW04].

Wand tracking for interaction The use of a real three-dimensional input device coupled

to a cursor embedded in the virtual environment allows natural manipulation of virtual

objects by direct translation and positioning in three dimensions. The position of the cursor

is always translated in the virtual space so that it remains relative to the current viewpoint,

as the input device moves relative to the physical screen.

More complex actions, such as those requiring alphanumeric input, are still performed

using the keyboard and mouse in the windowing environment.

44

3.2.5 Processing and Rendering System

The hardware system is based around a single computer serving as the primary node. This

computer runs the GLuskap software and is responsible for handling input from the user

through the mouse and keyboard, as well as 3D tracking and input systems. Depending

on output requirements and available hardware, the primary node may directly produce a

conventional 3D view or a stereoscopic 3D view, or manage the output of a stereoscopic 3D

view from connected secondary nodes. These secondary nodes are individual computers

which run a specialized version of the GLuskap software and produce synchronized 3D

views of the virtual environment managed by the primary node.

45

Chapter 4

Implementation

In this chapter, the implementation details of the GLuskap system are described. The “GLu-

skap system” includes the hardware and software components used to provide the large-

screen stereographic 3D interactive interface. The GLuskap software is used as part of this

system and includes enhanced functionality to support specific features of the integrated

system, though it remains usable as a standalone product.

4.1 The Visualization Hardware System

The hardware components of the GLuskap system are sketched in Figure 4.1. The system

includes three computers (one primary node and two secondary nodes), two motion track-

ing controllers, two data projectors, and a large rear-projection screen. The function and

roles of these components will be described here.

4.1.1 Screen

The GLuskap system uses rear projection for the large screen interactive interface. The

screen assembly is designed to be easily disassembled and reassembled for transport in a

46

Primary

Node
Secondary

Nodes

Flock of

Birds

Serial

Interfaces

Wanda

Device

Hat−Mounted

Head Tracker

Reference

Transmitter

Polarized

Glasses

Network

Switch

Screen

Projectors

Polarizing

Filters

Figure 4.1: GLuskap System Hardware Components (not to scale)

relatively small package, and is patterned on the design developed for the Envision Center

at Purdue University [Arn03].

The screen frame is constructed from modular extruded aluminum parts from 80/20.

The projection area is approximately 6 feet (1.83m) high and 8 feet (2.44m) across in the

standard 4:3 display aspect ratio; Stewart Filmscreen 100 material is used for the projection

surface.

4.1.2 Projectors and Polarized Optics

Paired Dell MP2300 DLP data projectors are used for stereoscopic projection. One pro-

jector is connected to the video output of each of the secondary nodes (described below).

47

These projectors have a maximum resolution of 1024×768 pixels and output brightness of

2300 lumens each. The projectors were chosen for their high brightness, value for money,

and compact size.

Custom adjustable stands have been constructed to enable the projectors to be stacked

on top of each other, minimizing the distance between projection lenses, and so that the

projectors can be precisely aligned to overlap. These stands are collapsible for transport.

Circular polarization filters are placed between the projectors and the projection screen.

In conjunction with matched polarized glasses, the filters allow the projection of the left

and right views to overlap. The views are then separated by the user’s glasses and directed

to the correct eyes.

4.1.3 Computers

The primary node of the GLuskap system, as implemented, is a Dell Precision M20 laptop

running Microsoft Windows XP and was chosen for portability, hardware compatibility,

and capability reasons. The Precision M20 features an ATI FireGL 3100 “workstation”

graphics adapter, capable of OpenGL quad-buffered stereographics if an external CRT dis-

play is used. It also includes an onboard RS-232 serial interface, required for connection

to the Flock of Birds motion tracking system. A second serial interface, to connect the

input widgets of the Wanda device, is provided by a USB to serial adapter. The laptop also

features an onboard 100BaseTX Ethernet adapter.

Both secondary nodes are Apple Mac Mini computers running Mac OS version 10.4.

Chosen for their compact form factor and portability, the Mac Mini includes an ATI Radeon

9000 video adapter fully supporting OpenGL graphics. They also include onboard 100BaseTX

Ethernet. The secondary nodes are connected to the primary node over by a 100BaseTX

Ethernet switch operating at 100Mbit/s.

48

The software configuration of the computer systems is described in Section 4.2.3.

4.1.4 Motion Tracking

Three-dimensional position and orientation tracking is performed by a Flock of Birds sys-

tem from Ascension Technology [Asca]. Two 6-degree-of-freedom1 (6DOF) sensors are

managed by the system: one tracks the position of the handheld Wanda device used for in-

teraction, and the other is attached to a hat worn by the user to track their head movements.

The Flock of Birds system uses DC magnetic tracking technology, where magnetic

fields aligned on the X, Y, and Z axes are sequentially generated by the reference transmit-

ter. The strength of these fields at the sensor position is used to calculate the position and

orientation of the sensors relative to the transmitter. The Flock configuration used by the

GLuskap system is capable of tracking the positions of the sensors within a 3.94 foot (1.2

m) range of the reference transmitter.

Each sensor is connected to a separate controller chassis. The two controller units are

connected together by a high-speed RS-485 serial bus, and one of the controllers is con-

nected to the primary node by a 115.2Kbps RS-232 serial link. This controller also drives

the reference transmitter. All initialization and tracking data communication between the

Flock and the GLuskap software on the primary node takes place over the RS-232 serial

connection.

Wanda device The Wanda device is a handheld pointing and control device that includes

a 6DOF motion tracking sensor, three buttons mounted left to right, and a two-dimensional

“HulaPoint” analog input controller mounted below the buttons [Ascb]. The motion track-

ing sensor is used for positional and movement input to the GLuskap system; the control

widgets are used to interact with the fullscreen immersive interface (see Section 4.2.4).

1Three positional coordinates (X, Y, Z) and three angular coordinates (pitch, yaw, and roll).

49

For consistency, the buttons on the Wanda device will be referred to as the left, middle,

and right Wanda buttons.

4.2 Interactive Graph Drawing Software

As an interactive system, GLuskap processes input from the user in combination with ex-

isting data and then provides feedback to the user. An outline of the data flow through the

software is shown in Figure 4.2. User input is processed directly from serial peripherals

(tracking system) and the mouse and keyboard, as well as through more complex actions

accessed through the windowing user interface or by executing a plug-in script. The up-

dated display is drawn by the GLCanvas object at the bottom of the diagram using the

OpenGL interface.

Rectangular boxes in the diagram represent software object modules, heavy edges in-

dicate the direction of data flow, and dashed edges indicate the direction of procedure calls

(for example, the WandaCtrl object initiates the procedure call for a data flow from the se-

rial interface). We will call this behaviour retrieving data. The other possibility is that the

object initiating the procedure call delivers data to the receiver.

4.2.1 Multiple Files, Multiple Contexts

For convenience, the GLuskap program allows multiple graph drawings to be loaded simul-

taneously, though at this time data cannot be exchanged between them directly. The graph

data structure, current 3D camera and view settings, and various other stateful data specific

to a particular graph are bound together in a data structure called a GraphContext (shown

as a grey shaded box in Figure 4.2), and abbreviated to “context” where unambiguous.

While in theory there is no limit on the number of contexts that can be open at any given

time, only one context can be viewed or modified at any given time. This is represented in

50

Figure 4.2: GLuskap Data Flows

51

the window system interface by use of a tab selection widget with one tab per open context,

and in the software by an object called the ContextManager (not pictured for simplicity).

In a single instance of GLuskap, there exists one and only one ContextManager object, and

it maintains a list of all open contexts as well as a pointer to the active context—the context

containing the graph drawing that is currently being displayed and to which all user input,

plug-in scripts, and other graph-specific operations are directed.

The ContextManager ensures that at any given time, if at least one context is open, then

a valid active context is maintained. If no contexts are open, the ContextManager disables

user interface elements related to graph manipulation and navigation and invalidates the

active context pointer.

All code procedures that interact with graph data or viewing parameters must first query

the ContextManager to determine the active context, and if no active context exists (no

graph drawings are open), then the procedure should be aborted. This layer of indirection

allows most code modules to interface with a single graph drawing and disregard any other

contexts that may be open at a given time.

4.2.2 Asynchronous Core

It can be seen in Figure 4.2 that the procedure call graph (dashed line edges) is not a directed

tree—there are multiple nodes with out-edges that have no in-edges. In particular, the

FlockCtrl, WandaCtrl, and GLCanvas nodes are marked with a star. These objects initiate

procedure calls to retrieve or deliver data without being called by some other program

object. Instead, they have update methods that are activated periodically by the main loop

of the GLuskap program. After processing new data and updating other program objects,

each update method terminates and returns control to the main loop. This allows other

parts of the software to be activated, either in response to external events or on a periodic

52

schedule.

This ability to respond to asynchronous events in multiple areas of the program flow

is fundamental, both to the window system user interface and the networking layer, and

also to allow them to work together. Using a cooperative scheduling system to manage

concurrency, as described, requires accommodation from the code perspective: any long-

running procedure must be explicitly broken up into parts that can be scheduled so that the

procedure does not block the operation of the rest of the system.

An alternative approach would be to use threads, which push the responsibility of man-

aging concurrency onto the operating system. Threading comes at a cost, though: com-

munication between concurrent threads and synchronization of operations becomes more

difficult to implement and even more difficult to test for robustness. As both the wxPython

interface and Twisted networking libraries support explicit cooperative scheduling, it was

decided to use this approach for the main GLuskap concurrency scheduling system.

Rendering The GLCanvas object is responsible for initiating updates of the display. The

target frame rate RT of the 3D graph view defaults to 20 fps (frames per second) but can be

customized by the user. The target frame rate is used by the GLuskap main loop to set the

scheduling interval (1/RT seconds) between calls to the GLCanvas update method.

When the GLCanvas update method is called, the ContextManager is queried to deter-

mine the active context, and the draw method on the GraphContext is called. This draw

method sets up the OpenGL viewing frustum according to the state of the Camera object,

then draws the objects in the scene representing the elements of the three-dimensional graph

drawing (the Graph object). Finally, additional interface elements including the heads-up

display, ground plane, and 3D cursor are drawn.

53

Diverse input devices Several avenues are available to the user for navigating and ma-

nipulating the active graph drawing. Keystrokes and mouse actions for navigation sent to

the 3D view pane are handled first by the window system. These events are subsequently

relayed to the Interactive GLCanvas,2 which adjusts the parameters of the Camera object.

The user can also use the menus and interface widgets present in the window system

interface to activate graph manipulation or navigation functions, e.g. rapid zooming (see

Section 3.1.1). These functions operate directly on the Camera and Graph objects. Plug-in

scripts function in much the same way and are described in detail in Section 4.2.5.

Input from the Flock of Birds tracking system is received over a hardware serial inter-

face. Unlike keyboard and mouse input, which is also used for general input to the window

system and thus necessarily mediated by the wxPython interface layer, the GLuskap soft-

ware handles serial communication directly. The position and orientation data from the

two tracking sensors is multiplexed into a single serial communications line by the Flock

hardware and is retrieved from the serial interface and demultiplexed by the FlockCtrl ob-

ject. The FlockCtrl object is also used to configure and initialize the tracking hardware on

program start.

Position and orientation tracking data is delivered to each of the two BirdControl objects;

at program initialization time, the InputManager registers handler objects with each of the

BirdControl objects so that they can deliver data when it is received. These handlers (Tracker

Handler and Cursor Handler) perform all scaling and transformation operations that are not

specific to a particular GraphContext and deliver the position and orientation updates to the

Camera and Cursor objects of the active context so that they can be reflected in the next

display update.

Input from the control widgets mounted on the Wanda device is processed through a

2A subclass of GLCanvas with support for these interaction events—except in the case of a remote client
(Section 4.2.3), the GLCanvas used for drawing is actually an instance of Interactive GLCanvas and performs
both roles.

54

second serial interface in a similar manner to the Flock system. Status data for these widgets

is encoded using the standard serial mouse protocol [Ascb]. These data are retrieved by the

WandaControl object from the serial interface and delivered to the InputManager.

Unlike the positional tracking data from the wand and head-tracking sensors, the Wanda

widget inputs are used both for navigation in space and to control the interactive context

menu system (see Section 4.2.4). The InputManager maintains a stack of Handler objects:

Wanda Handler is the default; Menu Handlers and Task Handlers (there are multiple kinds

of each, corresponding to different graph tasks) are pushed on the stack and popped when

completed. The InputManager delivers Wanda input events to the Handler on top of this

stack.

Networking A framework for multi-node passive stereographics was introduced in Sec-

tion 3.1.3. Although it is not shown explicitly in Figure 4.2, the network layer integrates

into the asynchronous data flow model. A full description of the network transport system

is given in Section 4.2.3.

The ContextManager and GraphContexts and all component objects (everything inside

the shaded grey GraphContext box) are shared between the primary node and the secondary

nodes. Updates to the attributes of these objects, and the creation and deletion of component

objects (e.g. vertices and edges in the Graph) are delivered by the Twisted layer to their

copies on the secondary nodes. The GLCanvas on each secondary node then retrieves the

data from the local object copies when drawing as described above.

4.2.3 Networked Multi-Headed Display with the Twisted framework

Twisted is a widely used framework for Python network application development, using

the well-known reactor pattern for asynchronous event handling [Sch95]. It includes mod-

ules supporting many common internet protocols as well as a framework for implementing

55

new protocols and services. Of particular utility is the “Perspective Broker” remote object

framework which allows complex objects to be accessed or copied over the network in a

translucent manner: “while remote object calls have different semantics than local ones,

the similarities in semantics are mirrored by similarities in the syntax” [ZL02].

With Perspective Broker, complex data structures can be shared with or accessed by re-

mote nodes through the networking layer with relatively few changes to existing code (com-

pared to creating an object serialization and update protocol from scratch) and a minimum

of overhead. The translucency is accomplished by using proxy objects which represent re-

mote objects and provide object methods (e.g. callRemote) that allow remote procedures to

be accessed. Data returned from remote procedure calls, where required, are handled asyn-

chronously using the standard Twisted mechanism of returning Deferred objects to which

callback functions are then attached. These functions are called by the Perspective Broker

layer with the return data values once they are available. A full treatment of the Deferred

asynchronous event handling mechanism is well beyond the scope of this thesis—for more

on this topic, consult the Twisted documentation [Twi] or “Twisted Network Programming

Essentials” by Abe Fettig [Fet05].

Twisted also provides a flexible authentication infrastructure to regulate connections

and access to objects through the network interface. The GLuskap system typically uses

an isolated network segment, though, and peer authentication mechanisms were deemed

unnecessary in this case. If the system were to be regularly exposed to an open network

while in use, the Twisted credential mechanism could be used to restrict access to authorized

clients.

Nodes and network setup As described in Section 4.1.3, the distributed passive stere-

ographic display uses a primary node and two secondary nodes. The primary node lap-

top runs the full GLuskap software; both secondary nodes run a different program called

56

the GLuskap network client. The Twisted Perspective Broker protocol runs over standard

TCP/IP.

In order to initialize the system, the GLuskap software is started on the primary node.

As the secondary nodes have no directly connected input devices, VNC software is used to

connect to the console interface on each secondary node from the primary node and start

the GLuskap network client. The network clients immediately connect to the instance of

GLuskap running on the primary node.

A weakness of this system is that if the primary instance of GLuskap needs to be

restarted for any reason, the network client instances must be re-connected to the new

primary instance through the use of the VNC remote console interface [RSFWH98]. An

alternative solution under consideration would allow the “network client” software to lis-

ten for connections initiated by the primary node. In this scenario, the secondary nodes

would return to an idle state in case of primary node shutdown or connection failure. The

underlying Twisted subsystem and Perspective Broker object sharing protocol do not make

a functional distinction between “server” and “client” after the TCP/IP connection is estab-

lished, so no changes to the data structure and object sharing code would be required.

Sharing the graph data structure over the network A bandwidth-intensive strategy for

producing the stereo 3D views on the secondary nodes would be to render each perspective

view on the primary node and deliver them to the secondary nodes as video streams to

be displayed. Even if the frames are rendered using accelerated graphics hardware on

the primary node, the computational load on the primary node is at least doubled3 and

the network bandwidth consumed rises quadratically as the display resolution increases

(while a 1024× 768 pixel display has twice the linear resolution of a 512× 384 pixel
3If the perspective view destined for one of the secondary nodes is re-used for the local display on the

primary node. In order to present a proper monocular view (without the left- or right-eye bias present in the
perspective views displayed by the secondary nodes), the primary node would have to render three times as
many frames.

57

display of the same physical size, it contains four times as many pixels.) While there exist

streaming video compression algorithms, a small movement of the camera viewpoint in

the virtual scene can result in changes to the entire frame (hampering the effectiveness of

compression algorithms that transmit the difference between frames), and high-resolution

video compression algorithms tend to consume large amounts of CPU cycles, especially in

the compression step. The net outcome of this approach would likely be to unnecessarily

overload the primary node and the network bandwidth.

It is possible to avoid this by communicating the parameters of the objects and the scene

to be displayed rather than fully realized 3D views. The Perspective Broker system provides

several mechanisms for translucent communication between objects across the network

channel. A first naı̈ve approach would be to expose the GraphContext data structure to data

retrieval procedure calls through the network. For each frame rendered by the GLCanvas on

a network client, it would request the required data from the GraphContext of the primary

instance. While each client would be guaranteed to have the freshest object data for each

frame, considerable amounts of network bandwidth would be wasted delivering duplicate

data for successive frames; in the majority of cases only a few attributes are changed on a

few objects from frame to frame, if at all.

To eliminate a good deal of the redundant data transfer in these two cases, we can

additionally make our data objects Copyable (a superclass, part of the Perspective Broker

framework). Making our existing objects Copyable requires only that they inherit from

the class Copyable and provide a getState method that selects the attributes which are to

be transmitted to the proxy object on the remote system when the object is first requested

and when it is updated. By making the Graph, Camera, Drawables, GraphContext, and

other related objects Copyable, their attributes and relations need not be transmitted over

the network to each client for each frame. The contents of these objects are updated only

when changes are made on the primary node, saving a considerable amount of bandwidth

58

and allowing frames to be rendered using the accelerated hardware of the secondary nodes.

Even if we use Copyable objects, an update of a single property on a complex object will

require that the entire object be serialized and transmitted to both remote clients. Perspec-

tive Broker provides an even more efficient solution for data structures involving complex

objects: the Cacheable superclass. In addition to using the getState method to initially

copy the state of the object to the remote proxy, Cacheable objects must also inform their

remote proxies (using a remote procedure call) about changes to attributes. In this way,

only the new or changed data needs to be propagated across the network layer; how much

or how little data is sent is determined by the implementing object.

The GLuskap software uses a Cacheable implementation as described above. The Con-

textManager is shared by the primary node to all connected secondary nodes, along with

all GraphContexts and component objects and the ContextManager pointer to the active

context. This allows multiple graphs to be loaded and switched from the window interface;

once the context and data of a loaded graph has been transmitted to the secondary nodes,

switching to display it requires only changing the active context pointer and reflecting the

change on the remote nodes. The dataflows to shared objects are handled by update remote

procedure calls from the objects on the primary node to their remote proxies.

Interface implementation with Drawables The Drawable class is conceptually simple:

Drawable objects can be added to a list stored on a GraphContext. When each frame is being

rendered, the draw method on the Drawable object will be called by the GraphContext.

Drawable objects are Cacheable and can thus be passed through the Perspective Broker

layer to the secondary nodes.

The power of Drawables is expanded considerably by granting them access to the other

parts of the GraphContext data structure. For instance, a Drawable object can query the

current position of the Cursor so as to draw its associated 3D objects in proximity to the

59

Cursor. This is in fact how the interactive object placement mechanism described in Sec-

tion 4.2.4 is implemented: the Task Handler creates a Drawable that tracks the position of

the Cursor and draws a semi-transparent vertex4 at the nearest grid point. When the user

clicks the left Wanda button to signify acceptance of the vertex position, the Task Handler

retrieves the last used vertex position from the Drawable before destroying the Drawable

and creates a vertex in the graph at the same position. This data exchange is shown in

Figure 4.2 as a data edge from the Drawables directly to the graph elements for simplicity.

Drawables are used for drawing graph objects and other associated display objects (e.g.

selection highlights) for interactive selection and positioning tasks, and also to display the

interactive context menus (also described in Section 4.2.4).

Latency and synchronization issues On an isolated network segment, the network la-

tency for small update packets is minimal (less than 10ms). With available unidirectional

throughput estimated at 40Mbit/s, 225KB of data can be transmitted to both secondary

hosts in 100ms (including 10ms latency but not processing delay).

While individual data updates must necessarily be initiated and transmitted sequentially

(to one secondary node and then the other), most frame-to-frame updates such as reposi-

tioning individual vertices or moving the camera or 3D cursor involve small amounts of

data per packet. In practice this means that both secondary nodes remain synchronized

such that the ordering of updates is undetectable by the user.

4.2.4 3D Navigation and Interaction

GLuskap 2.4 features a standard window system interface (using the wxPython library) with

embedded OpenGL three-dimensional graph display. In the new GLuskap system, the pri-

mary node retains the window system interface for comprehensive control (see Figure 4.3).

4Using the same underlying procedure used for drawing the existing graph vertices.

60

Figure 4.3: Primary Node Window System Interface

Figure 4.4: Fullscreen 3D Interface

61

A new context-sensitive interface has also been added allowing the user to perform inter-

active navigation and manipulation tasks using the Wanda device, without resorting to the

window system interface.

This full-screen environment, shown in Figure 4.4, eliminates most of the window sys-

tem GUI interface widgets. The window system elements that are present are not used for

interaction, only for initial configuration of the GLuskap network client software during

system initialization. Attempting to use window system widgets for interaction (menus,

prompts, selections, etc.) is complicated by the network layer interposed between the user

input devices and the display device: for example, presenting a dialog box would require

the software to synchronize the operation, appearance, and destruction of a native window

system dialog box between both secondary nodes. The wxPython interface to the win-

dow system does not provide for the fine-grained “remote control” over native widgets that

would be required to accomplish this effectively.

All interactive elements are drawn within the OpenGL frame by the GLuskap software.

By using Drawable objects that can be shared across the network layer as Cacheables and

drawn by the GLCanvas on each computer, the GLuskap system can provide a dynamic

interface that is consistent across primary and both secondary nodes.

Active HUD for feedback Along the lower margin of the OpenGL frame, a “Heads-Up

Display” (HUD) is superimposed. This display of status elements supplements the per-

spective graph view by informing the user of the three-dimensional position of the cursor,

the orientation of the camera view relative to selected vertices and the coordinate axes, and

provides text feedback on the progress of interactive operations. These are drawn as semi-

transparent surfaces at the depth of the camera, so they overlay other elements of the scene

at the same display position. Stereoscopically, the HUD appears to lie at the same depth as

the screen.

62

Basic 3D navigation User navigation through the virtual environment allows three-dimensional

graph drawings to be visualized from different viewpoints and also allows the user to work

more closely with one part of a large drawing. In the GLuskap window interface, the ori-

entation of the camera is controlled by dragging with the mouse on the OpenGL frame, and

linear movement of the camera is controlled by the keyboard. The challenge in develop-

ing a navigation interface for the fullscreen interface is to maximize freedom of movement

while maintaining consistency with a limited input device.

Using the wand or head position tracking data for direct navigational control breaks

the 1:1 coupling between natural head and hand movements and their analogs (camera and

cursor) in the virtual display; in particular, the effectiveness of head movement for absolute

movement and rotation is hampered by the limited range of motion (within a 1.2m radius

of the transmitter) and the fact that if a user turns his head too far to one side or another, he

will lose sight of the screen.

We can use the mouse and keyboard in the window system interface to control the

view even when the large-screen interface is being used. Mouse input through the window

system necessarily uses the window system pointer, though, and requiring one to alternate

one’s focus between the large-screen 3D interface and the window system interface on the

primary node to keep track of the position of that pointer negates much of the advantage of

using the fullscreen interface.

The primary navigation control system for the large-screen interface therefore involves

the controls present on the Wanda device. With only two input axes available on the phys-

ical directional control widget, the functionality of this input must be constrained to two

of the six degrees of freedom for three-dimensional navigation. This limited functionality

could be extended by allowing the user to switch between subsets such that two DOF are

accessible at any given time.

As implemented, GLuskap provides a navigation control interface that conforms some-

63

what to the “turntable” metaphor described by Ware [War04, Ch. 10], belonging to the

larger class of “world-in-hand” interface metaphors. Movement on the left-right (X) axis

of the directional widget maps to “orbital” movement of the viewpoint around the centre

point5 of the graph: from the user’s point of view it appears as though the graph model

is being rotated in place. The forward-backward (Y) axis of the widget is mapped to for-

ward and backward movement, which in the typical case where the view is centered on the

graph model is equivalent to zooming in on the part of the graph nearest to the camera.

For simplicity, modal selection of alternate movement bindings for this input device is not

implemented; this results in some changes in camera orientation and position being directly

available only through the window system interface running on the primary node.

Although hampered by the lack of a 3 or more DOF input control scheme on the hand-

held controller, this configuration allows the graph drawing to be evaluated from many

different viewpoints and allows most parts of the drawing to be brought into range for ma-

nipulation with the cursor (adding and modifying graph elements). The “turntable” orbital

rotation feature also enhances the three-dimensional perception of the graph model through

the kinetic depth effect (Section 2.2.2). The Wanda buttons are used for interactive tasks as

described below.

Head-tracking for direction and position offset Movements of the user’s head are

tracked by a Flock sensor affixed to an adjustable-fit ballcap. The distance between the

hat sensor and a reference point is used as an offset to the position of the viewpoint in the

virtual space. This reference point defaults to the position of the Flock reference trans-

mitter and can be zeroed (set to the current position of the sensor) by the user on request.

Rotations of the user’s head in the up-down and left-right directions are also applied to the

camera view; this is also relative to a calibrated reference position. With a large-screen

5Determined by calculating the mean of all vertex positions.

64

display, rotational head tracking is useful only as far as the user can maintain the screen in

the user’s field of view.

This allows naturally occurring minor shifts in position and orientation, as well as de-

liberate head movements, to be reflected in the three-dimensional display. Animation of

motion parallax effects is an effective depth cue, independent of and complimentary to the

stereo depth effect and other cues (see Section 2.2.2).

Interactive highlight-and-select The most common graph manipulation tasks, selecting

and positioning graph elements, have been made the most easily accessible in the fullscreen

interface. The left Wanda button is used consistently for selecting and confirming actions,

consistent with left mouse button usage in popular window systems.

The 3D cursor represents the Wanda device as a conical pointer with a three-dimensional

coordinate position and orientation in the virtual scene. One approach to selecting objects,

logically extending two-dimensional conventions, is to force the user to position the cursor

so that its tip is enclosed by the three-dimensional volume of the object to be selected and

then click the left Wanda button. This conforms to the Fitts’ Law model of difficulty, and

is affected by human and machine lag as described in Section 2.2.3. As well, evaluation of

the distance from the cursor to a target object in the depth direction is more difficult than

the horizontal or vertical distance, even with stereoscopic and other depth cues.

The task can be made easier in two ways. First, we can provide feedback to the user

indicating when an object is selectable; that is, when an input click will result in that object

being selected. In the above example, an object is selectable when the tip of the pointer

is enclosed by the object’s three-dimensional surface. Research indicates that for selec-

tion tasks, both visual and auditory feedback are effective, especially in visually stressful

conditions [AMH95, FG00]. Visual feedback in the form of “mouse-over” highlighting of

interface elements is found in many two-dimensional interfaces, and the extension to high-

65

lighting three-dimensional objects when they are selectable is straightforward. Auditory

feedback can be as rudimentary as a “click” or other simple sound played when an object

becomes selectable and still be effective.

Second, we can enlarge the three-dimensional picking volume within which the cursor

must be positioned to make an object selectable. With appropriate interaction feedback, the

enlarged selection area need not have a direct visual representation in the interface—it is

experienced by the user only in that an object becomes selectable when the cursor is within

a certain distance. In the case where the cursor is within the picking volume of two or more

objects, the closest object to the cursor is selectable and should be highlighted.

Both visual feedback and target size enlargement are implemented in the GLuskap in-

terface to enhance the user’s performance in selecting objects and mitigating the effects of

end-to-end system lag. If no object is already selected, holding down the left Wanda button

engages a selection mode for picking vertices and edges. In this mode the nearest object to

the cursor, within a picking tolerance (a set distance from the cursor, effectively equivalent

to the amount by which the picking volume of each object is enlarged), is highlighted. If

an object is highlighted when the button is released, that object is selected and a selection

highlight (distinguishable from the picking highlight) remains on the object.

Auditory feedback is not included in GLuskap at this time.

Selection serves to designate graph objects to be acted upon by various operations.

Clicking the middle Wanda button while an object is selected will immediately clear the

selection.

Drag-moving vertices If a vertex object is selected, holding down the left Wanda button

engages a drag movement mode, where the vertex is moved (with visual feedback) corre-

sponding to movements of the cursor. Edge segments cannot be directly moved as they are

necessarily tied to the positions of their incident vertices, though the bend points of bent

66

edges can be selected and moved like vertices.

GLuskap implements a snap feature for object placement: the position of the cursor is

filtered to the nearest point on a three-dimensional grid of fixed intervals. This is especially

appropriate in the three dimensional graph drawing application domain as vertices are typ-

ically constrained to lie on integer grid points (Section 2.1.2). The snap interval for placing

objects can be set by the user depending on situational requirements. If required, object

position coordinates can be specified with arbitrary precision6 by keyboard input through

the window system interface.

Interactive object creation New graph objects are created by selecting the type of object

to be created from the root context menu (described above). In the case of a new vertex, a

semitransparent “ghost” vertex is created and follows the cursor position, appearing at the

nearest snap grid point. The coordinate position of the new vertex is displayed in the left

side of the HUD. The new vertex can be fixed in place by clicking the left Wanda button:

the ghost vertex will be replaced by a standard vertex.

Creating a new edge is a more involved procedure. After selecting the “Add Edge”

menu option, the user must select a vertex (following the same closest object to cursor

highlight-and-select procedure as described above). A second vertex must then be selected,

and an edge is created and displayed between the two selected vertices. Status feedback and

prompts are given in the HUD during the procedure. If the user attempts to create a loop

(an edge incident to only one vertex) or a redundant edge (between two already-adjacent

vertices), an error message is displayed. The task can be aborted at any time by clicking

the middle Wanda button.

6Within the limitations of platform floating-point accuracy.

67

Selected object Menu options
None Add vertex

Add edge

Vertex or bend point Delete

Edge (plain) Add bend
Delete

Edge (subedge) Add bend
Select parent

Edge (superedge) Delete

Table 4.1: Context menu structure

Context menus with Wanda 2D widget Most tasks are initiated through context-sensitive

menus that are drawn as semi-transparent surfaces in the middle of the OpenGL display.

The right Wanda button is designated for context-sensitive operations. If no menu is cur-

rently displayed, clicking the right Wanda button will bring up a context menu appropriate

to the current selection status. The forward-backward (Y) axis of the Wanda navigation

widget is used to move the highlight between menu selections; clicking the left (select) or

right (context) Wanda buttons will select the currently highlighted menu option. Clicking

the middle Wanda button while a context menu or task initiated from a menu is active will

dismiss the menu or cancel the action. Table 4.1 lists the context menu options displayed

for each type of selected object.

When no objects are selected, a root menu is presented that allows the user to initiate

creation of graph objects (described below). The context menu for an edge or vertex lists

several actions that can be performed on the selected object.

Several menus for edges are listed in Table 4.1; different menu options are presented

for a selected edge depending on the type of edge. A plain edge is a straight-line edge with-

out bends. Subedges and superedges are used in the construction of bent edges in polyline

grid drawings: a subedge is a single straight-line segment incident to a vertex and a bend

68

point or two bend points, whereas a superedge represents the sequence of subedges form-

ing a complete bent edge incident to two vertices. A subedge necessarily has a “parent”

superedge, and each superedge must contain at least two subedges.

A plain edge can be “bent” by choosing the “add bend” option from the edge context

menu. A bend point will be added to the edge and placed by the user, similar to adding a

new vertex. A plain edge can also be deleted from the graph.

Like plain edges, subedges can be selected as described under “Interactive highlight-

and-select”, but superedges cannot be directly selected. A selected subedge instead pro-

vides the option to select its parent superedge. While a bend can be added to a given

subedge, a subedge cannot be deleted directly. To reduce the number of segments in an

edge, the user must remove bend points instead; they can be selected and removed like

vertices.

Bend points cannot be added to superedges (again, due to ambiguity). Superedges can,

however, be removed from the graph.

4.2.5 Plug-In Architecture

The GLuskap plug-in scripting framework provides a mechanism for users and developers

to implement fully functional graph processing and drawing algorithms while remaining

insulated from the core GLuskap code. Plug-ins are self-contained Python scripts that are

launched from within the GLuskap user interface and have access to the active GraphCon-

text, including the Camera and all graph elements. Even in the case where GLuskap is

distributed as a packaged executable file, rather than as editable Python source, plug-in

scripts can still be created and edited as plain source files.

Plug-in scripts can interact with the user. A script can request a value to be entered, a se-

lection to be made from a list of choices, or simple yes-or-no confirmation decisions. Mes-

69

sages can also be displayed to the user, either through interactive mechanisms or through

the status area of the heads-up display.

Using the standard Python import mechanisms, a plug-in script file can import modules

from the GLuskap codebase or from the Python standard library. In the latter case, only a

subset of the standard library may be available if GLuskap is being run from a packaged

executable file, as this distribution format does not require a full Python runtime environ-

ment to be installed on the user’s system. Only components of the standard library that are

used by the GLuskap core code, or are explicitly designated for inclusion by the developer

performing the packaging, will be available. These include standard math functionality,

string and array handling, and colorspace transformations. The GLuskap package also in-

cludes a selection of three-dimensional vector operations (including addition, subtraction,

multiplication and division by scalars, normalization, arbitrary axis rotation, dot product)

that can be used by scripts.

Python’s exception handling is used throughout the GLuskap codebase including the

plug-in scripting subsystem. Any unhandled exceptions raised during execution of a plu-

gin will interrupt the execution of the plugin and exception information (type of excep-

tion, value, and stack trace) will be displayed to the user to aid in debugging the plug-in

script. More details on Python exception handling are available in the official documenta-

tion [vR05, Sec. 4.2].

API details A plug-in script file must provide a run function, which is called by the GLu-

skap program when the plug-in is launched by the user. This function is passed two objects

by reference: the GraphContext, and a UI object that provides methods for interacting with

the user.

Graph and Camera instances are accessible as properties of the GraphContext. These

objects are the same data structures used by the GLuskap core to represent the graph draw-

70

ing and the viewpoint parameters respectively.

The Graph data structure is based around a list of vertices and a list of edges. These lists

contain Vertices and Edges: code objects that contain methods and attributes appropriate to

each type of graph element. Vertices have an id attribute (character string) that is required

to be unique among all vertices in the graph. Edges are uniquely specified by their source

and target Vertices— while GLuskap does not support true directed graphs, the source and

target notation is used for convenience. The bend points of bent edges are instances of

DummyVertex, a subclass of Vertex, and are stored in the graph vertex list. Likewise, the

subedges and superedges used to implement bent edges (described in Section 4.2.4) are

variants of Edge and are stored in the graph edge list.

Where possible, the methods and attributes related to Edges and Vertices are located

on those objects. However, in some cases (particularly where an operation would involve

adding or deleting graph elements, for example adding a bend point to an edge), the meth-

ods are located on the Graph object such that the method has access to the vertex and edge

lists.

Adding elements to the graph is a two-step process. First, a new object of the desired

type (Vertex or Edge) is created and its attributes set. Next, a method is called on the Graph

object (e.g. addVertex) to add the new element to the graph. At this step, the element will

be checked for uniqueness (id of a vertex, source and target of an edge) and the object will

be added.

Likewise, elements can be removed from the graph by use of the removeVertex or re-

moveEdge methods on the Graph object. These methods remove the specified object from

the vertex or edge list of the graph and ensure that references to the removed object from

other graph elements are also removed. If the calling code maintains a reference to the

removed object, it will be preserved, otherwise it will be garbage collected.

Because of optimizations in the OpenGL drawing pipeline, updates to the Graph object

71

and any Vertices and Edges must be announced by setting a dirty flag on the Graph. All

methods on the Graph object will set this flag automatically. In cases where attributes of

Vertices or Edges are being modified directly (color, size, position, etc.), the following

syntax is used:

def run (context , UI) :

Grab the f i r s t ve r tex from the graph ver tex l i s t

G = contex t . graph

v = G. v e r t i c e s [0]

This w i l l not update the d i r t y f l a g :

v . pos = (0 . 0 , 1 .0 , −1.0)

This w i l l :

G. modVertex (v) . pos = (0 . 0 , 1 .0 , −1.0)

The modVertex and modEdge methods of the graph class first check that the specified

object is present in the graph, set the dirty flag, and then return the object. This allows the

inline usage of the mod methods as shown.

Latency and synchronization issues In the current state of implementation, using plug-

in scripts with the networked rendering setup can result in temporary yet noticable desyn-

chronization of the networked displays. It is hypothesized that this undesirable behaviour

stems from the method by which updates to Cacheable objects (including the graph data

structure) are handled.

To ease integration with existing code, these objects were adapted to the Perspective

Broker framework by adding a call to the Cacheable update method on every change to the

properties of the object (see Section 4.2.3). This ensures that individual objects are updated

72

quickly on the secondary nodes. Under interactive operating conditions, the processing

time and network latency for these updates is minimized by comparison with the reaction

time delay between user operations.

When a plug-in script is executed, though, many graph objects may be created, updated,

or removed in a very short period of time. The overhead of each operation being processed

separately can compromise the responsiveness of the large-screen display for a period of

seconds. This is highly detrimental to the user experience.

One possible solution would be to providing an interface for plug-in scripts to explicitly

notify the networking subsystem of large numbers of updates to cached objects. Temporar-

ily disabling the automatic processing of property updates in favor of updating the entire

data structure following a batch of updates could minimize the per-transaction overhead of

the Perspective Broker mechanisms. Further investigation of this area is required.

4.3 Software Engineering Techniques

The GLuskap system is a complex piece of software with several integrated subsystems.

The codebase comprises more than 11,000 lines of Python and is the product of three years

of development by four programmers (at different stages of development).

Brooks [Bro95] differentiates between programs, programming systems, and program-

ming products. A program performs a useful function, but only for the developer in the

environment in which it was constructed. The programming product is a program made

portable and robust, maintainable and usable by others, and comprehensively tested and

documented—and it costs on the order of three times as much to develop as the simple pro-

gram it is based on. A programming system is an assemblage of subprograms, integrated

to perform a larger task or set of tasks. In this case, the added complexity comes from

defining interfaces for each subprogram such that they can reliably communicate between

73

themselves, and from the system integration testing that is required in addition to the test-

ing of each subprogram in isolation. The programming system again costs three times as

much as a single program.

The programming system product, then, is the logical intersection of these two exten-

sions to the simple program—an integration of subprograms that is maintainable, reliable,

tested, and documented. By Brooks’ estimation, in a development context the program-

ming system product costs nine times as much as the simple program that may have been

at its core. It is the contention of the author that the GLuskap software falls into this most

useful and most costly of categories. As described below, GLuskap integrates several inter-

dependent subsystems using defined interfaces. Furthermore, efforts are made to refine the

product for distribution and operation in a variety of environments by many users.

The development of these complex products requires care and attention to a degree that

simple programs do not. No software product is perfect; here we define perfection in the

sense of performing all possible tasks with 100% correct functionality. New uses for ex-

isting software are conceived; new algorithms are developed that improve on the speed,

reliability, or functionality of existing implementations. For these and other reasons, soft-

ware products go through a life cycle. After the initial development and testing, the software

is released. User feedback and evolving requirements stimulate further development and

testing, leading to additional releases. An entire field of research into software engineering

is focused on methods and processes for software development that improve quality and

reliability.

With a small user base and development team, the GLuskap development process has

not adopted a formal software engineering process. Effective concepts and techniques have

been adopted where possible in order to increase the maintainability and overall quality of

the software product.

74

4.3.1 Object Orientation and Modular Interfaces

While it supports several programming paradigms, including functional and traditional pro-

cedural methodologies, the Python language has a well-developed object model and is op-

timally suited to object-oriented programming. The critical wxPython and Twisted libraries

both use object-oriented interfaces. While the Python interface to OpenGL mirrors the stan-

dard C/C++ procedural interface, access to OpenGL routines has been isolated in relevant

GLuskap code objects, which form a consistent wrapper around the procedural aspects.

It is natural, then, that GLuskap development should follow an object-oriented ap-

proach, building the software product from code objects which tie together data objects

with applicable methods. While each code object implements an interface with which it

interacts with other objects, the relationships between these objects can be organized in

such a way as to provide straightforward and consistent interfaces between subsystems.

GLuskap interfaces Consistency of interface minimizes the amount of overhead required

on the part of the developer in understanding the details of the structure and implementation

of the subsystem. As an example, GLuskap represents graph data structures internally as

cross-referenced lists of vertices and edges along with other associated data, bound up in

the Graph, Vertex, and Edge classes. In some cases, simplicity of implementation has been

sacrificed for optimization of execution speed.

Simply adding a bend point to an edge requires a considerable amount of bookkeeping

in order to properly handle different circumstances and to ensure that the data structure

remains internally consistent. From the point of view of a developer not working with

the Graph class implementation, though, the interface to this task is encapsulated in the

Graph.bendEdge() method, which takes an Edge object and the coordinates of the new

bend point as parameters and returns the new DummyVertex object or raises an exception

if the operation cannot be performed. It is the responsibility of the Graph implementor to

75

ensure that the code behind this interface behaves “as advertised.”

Code re-use Consistent interfaces and factoring of abstract routines allow for effective

code re-use: Python’s data type model is both dynamic and strict [vR05, Sec. 3.1], maxi-

mizing the potential for abstraction of algorithms and data types while minimizing unpre-

dictable results. Effective code re-use has been shown to reduce the incidence of errors in

software development [TDB92, BBM96]. Furthermore, errors can be more rapidly found

and fixed in re-used procedures than in multiple implementations scattered through the

code base.

Figure 4.2 gives an outline of the code objects involved in the data flow process of the

interactive user interface. Other subsystems, like the wxPython structures for managing the

window system interface, the Twisted network connection management infrastructure, and

the routines for loading and saving graph data from supported file formats, communicate

with these objects over straightforward object-oriented interfaces.

4.3.2 Change Management With Subversion

As the aphorism has it, Rome was not built in a day. The software development pro-

cess is similarly time-consuming and incremental. New routines are implemented, tested,

and debugged. Existing routines are at turns revised, re-tested, factored, and combined.

These processes often take place over time intervals that exceed the span of human work-

ing memory. Maintaining a grasp on the motivations and history of changes in a software

implementation is aided by the use of a change management strategy.

To a certain extent, changes can be documented by annotating the source code with em-

bedded comments, but if this is used exclusively, the accumulation of revision documenta-

tion over time would become cumbersome, redundant, and negatively affect the readability

of the code. Attempting to preserve the full history of revisions made to individual lines of

76

source code in this way would be inconceivable, due to both the heavy responsibility placed

on the programmer and the sheer volume of historical comments that would be generated.

The need for a systematic change management solution is magnified when more than

one programmer works concurrently on the same project. Changes to the source code

become a form of communication between developers. Not only the history but the prove-

nance of changes must be recorded. Individuals collaborating in development of the same

code modules may attempt incompatible changes to the code at the same time—how is this

to be resolved?

Change management software There is a long history of change management software

products designed to address these issues, dating to Rochkind’s Source Code Control Sys-

tem [Roc75]. SCCS was largely superseded by Tichy’s Revision Control System [Tic85],

which was then integrated into the CVS package which supports multiple developers work-

ing in a networked environment [Ced03]. CVS is still widely used by many development

teams, especially in the free/open source software community, but suffers from several key

weaknesses.

All these products have core principles in common. Sets of changes to source code files

are stored in sequence and the revision history is accessible to the user. When changes are

committed, that is, the change management system is instructed to save the current state of a

file or files in the revision history, the user is prompted to attach some descriptive comments

to this set of changes. These comments are useful not only for producing a human-readable

summary of the changes to the software over a given time period, but also for the developer

in understanding the motivations behind each particular set of changes.

Subversion and CVS Subversion was created as a direct replacement for CVS, designed

to correct the deficiencies of CVS without drastic changes to the general philosophy and

77

workflow processes. This approach makes it easy for users to migrate from one system to

the other. Like CVS, Subversion uses a network-accessable repository from which devel-

opers check out a copy of the source code; changes that they make must be committed to

the repository in order to be shared with others. Where CVS supports only tracking of re-

visions on individual files (not directories) and does not support the renaming or relocation

of files,7 Subversion manages files, directories, and metadata by tracking revision numbers

across the entire repository tree. The Subversion repository access protocol is improved in

both efficiency (only differences, not entire files, are sent across the network) and robust-

ness (commit operations are atomic— a set of changes is committed together or not at all)

[CS02, CSFP05].

GLuskap development and Subversion Through the development cycle of GLuskap

2.4, change management was introduced using CVS. After a short period wherein the dis-

advantages of the latter system were encountered, the project was migrated to Subversion.

The “branching” feature (common to both CVS and Subversion) allows multiple ver-

sions of the same software product to be maintained concurrently. The GLuskap 2.4 release

and the latest development version (the “trunk”) of the GLuskap system are both accessible

in the repository. When changes are made to a part of the source code that is identical in

both versions, these changes can be easily applied to both branches of the repository. When

the development version of the GLuskap system is deemed ready, it will be copied into a

new branch. Testing in preparation for a release can be carried out and fixes committed to

this branch, while new features continue to be added on the trunk.

While GLuskap is usually distributed to end users as a self-contained package precom-

piled for a specific platform, or as a source code archive of a particular revision, interested

users can obtain development snapshots directly from the Subversion repository over the

7These operations result in the loss of version history for the affected files.

78

Internet.

Documentation for GLuskap, including the user’s manual, is also maintained with Sub-

version. LATEX files in particular are well suited to revision control, as the differences

between revisions are human readable (unlike the binary file formats used by some other

document preparation and word processing packages). In this way, changes to the doc-

umentation can be annotated and tracked; “released” editions can be preserved while re-

visions and new material are tracked on a separate branch. Managing contributions from

multiple authors is similarly straightforward.

79

Chapter 5

Evaluation

5.1 Other Interactive Graph Drawing Systems

It is useful to examine the GLuskap software in the context of other interactive 3D graph

drawing products. GLuskap is the only package of those examined that has explicit sup-

port for large-screen stereographic visualization and specialized three-dimensional input

devices. This sets it apart, certainly, but we assess here the feature set and capabilities of

GLuskap relative to a selection of comparable software packages.

5.1.1 Historical GLuskap

Improvements in capability and usability have been made to the GLuskap software in the

process of adapting it for use in the large-screen immersive 3D system. The software pack-

age remains usable independent of the specialized hardware used in the GLuskap system,

though some features are necessarily dependent on the presence of specific hardware com-

ponents. GLuskap is freely available and licensed under the GNU General Public License

[FSF91].

80

Window system interface GLuskap 2.4 and the new GLuskap software provide graphical

windowed interfaces using the wxPython libraries and with an interactive 3D view rendered

in an embedded OpenGL frame. The look and feel of the GLuskap window interface has not

been substantially changed, though in some places widgets have been added or reorganized

to support new features.

Both products are tested on Microsoft Windows, Linux, and Macintosh OS X.

Three-dimensional input systems True three-dimensional control over object position-

ing and selection has been made possible through the support for the position-tracked

Wanda input device. The interfaces created to support this particular hardware configu-

ration, including the representation of the input device as a pointer embedded in the virtual

3D space, are designed to be extensible. Support for additional hardware devices and con-

figurations is feasible with the development of software modules that adapt the data format

of new devices to the existing interfaces.

The new GLuskap interface to the Wanda device and Flock of Birds systems are sup-

ported only under Windows and Linux; Mac OS X systems typically lack the hardware

serial interfaces required.

Plug-in system GLuskap 2.4 included some simple layout algorithms (including random

and circular placement of vertices and a simple force-directed model). These were included

as features of the core GLuskap software. For the user to modify or add new integrated

algorithms of this type is non-trivial and involves modifications to the core classes of the

GLuskap implementation.

The new GLuskap system introduces a plug-in scripting framework to address this. A

selection of these scripts are distributed with the software package, including the straight-

line “moment curve” algorithm of Cohen et al. [CELR97], the one-bend drawing algorithm

81

of Morin and Wood [MW04], the two-bend algorithm of Dyck et al. [DJN+04], and the

simple force-directed spring embedding algorithm written for GLuskap 2.4 repackaged as

a plug-in script. Along with some trivial plugins that demonstrate various features of the

interface, the included algorithmic plugins are useful examples for users who wish to con-

struct their own layout plugins.

File format support The file import and export modules have not changed significantly

in the new GLuskap. GraphML [BEL04] and GML [Him96] are supported, in addition to

the native MG2 file format.

Graph feature support The new GLuskap software, like GLuskap 2.4, supports ordinary

undirected graphs without loops (edges with the same vertex for both endpoints) or multi-

edges (two or more edges connecting the same pair of vertices). Both straight-line and

bent (poly-line) edges are supported. Directed edge support is seen as a priority for future

development; while a full implementation is not included at this time, steps toward adapting

the codebase to this goal have been taken.

Both new and old packages support the attribution of vertices with size (floating-point

≥ 0) and color (floating-point RGB) values as well as arbitrary string labels. Edges can be

attributed with size and color values. Support for changing the shape of the 3D representa-

tions of vertices and edges is not supported.

5.1.2 WilmaScope

WilmaScope is a 3D graph visualization package developed by Tim Dwyer [DE04] and

others at the University of Sydney, Australia. Where GLuskap is designed primarily for

working with drawing algorithms that specify explicit positions for vertices (and edge bend

points), WilmaScope is based around several force-directed models for visualizing arbitrary

82

graphs. It is freely available under the GNU Lesser General Public License [FSF99].

Window system interface WilmaScope is written in Java and uses the Java Swing UI

toolkit to provide a portable cross-platform interface. The Java3D interface to OpenGL is

used for the animated 3D graph display. WilmaScope supports Microsoft Windows, Linux,

Macintosh OS X, and Unix environments.

Whereas the wxPython library used by GLuskap provides a uniform programming in-

terface but uses each window environment’s native widgets, the WilmaScope user interface

is identical on all supported platforms but is inconsistent with the appearance of native

applications in any specific environment. The latter is typical of many Java applications.

Which approach is to be preferred is a point of contention among developers and interface

designers.

WilmaScope requires that the Java runtime environment and the Java3D package be

installed on the user’s system; the latest Windows distribution packages include the Java

runtime to be optionally installed if not already present. For Windows and Mac OS X sys-

tems, GLuskap is distributed in standalone packages that require no external libraries. This

comes at a cost of increased download size (5.6MB for self-installing Windows package

vs. 473KB for source distribution). By comparison, the WilmaScope 3.1 install package

for the Windows platform is 62.4MB.

Three-dimensional input systems WilmaScope does not support any external 3D input

devices for position input or navigation. This is less of a hindrance when considering

WilmaScope’s focus on visualization with force-directed models; navigation in three di-

mensions is more easily accomplished in a two-dimensional input context than interaction

under the same circumstances. Specific positioning of vertices in three dimensions can be

done by dragging vertices with the mouse; in order to change the position of a vertex in the

83

depth direction, the graph view can be rotated to view the graph from the “side” and the

vertex then moved into place.

Plug-in system Several types of plug-ins can be written in Java by extending parts of

the WilmaScope class structure. New graph generation algorithms, layout structures, and

analysis algorithms can all be implemented through separate specific plug-in interfaces. By

contrast, the GLuskap plug-in architecture provides a generic interface where scripts can

be written to perform all these functions.

Layout algorithms in WilmaScope are applied continuously as graph elements are added

or removed; in GLuskap, a plug-in must be re-executed after any changes to the graph

data. The GLuskap plug-in interface also provides simple hooks to allow the script to

interact with the user, presenting choices, requesting values or confirmation of actions, and

displaying messages.

WilmaScope additionally supports plug-ins that modify the function and appearance of

the graph display view; this functionality is not present in GLuskap.

A simple CORBA [Vin97] interface is also implemented in WilmaScope, allowing

scripts to be written in any language that provides CORBA bindings. Example Python

scripts using this interface are provided with the software package.

File format support Both the standard GML file format and an XML-based native for-

mat (WXG) are supported by WilmaScope. Unlike GLuskap, the XML-based standard

GraphML format is not supported.

Graph feature support WilmaScope supports undirected and directed graphs and in-

cludes support for multi-edges. Polyline edges (as featured in GLuskap) are not explicitly

supported. Several types of directed edge with distinct visual representations can be used

84

to represent semantic properties of edges, e.g. three-dimensional drawings of UML class

diagrams [RJB99].

Clustering of vertices is well-supported. Users can designate clusters as vertex-induced

subgraphs; the cluster is then visually differentiated with an enclosing translucent sphere.

A nested hierarchy of clusters can be created. Several types of cluster are supported, with

different appearance and layout of the vertices within the cluster.

5.1.3 OrthoPak 3D

OrthoPak 3D is an older package developed at the University of Lethbridge for work on 3D

orthogonal graph drawing algorithms. Written in C++ and using the LEDA1 GraphWin for

the interactive interface, OrthoPak 3D is included here partly as an illustration of the relative

dearth of software for interactive three-dimensional graph drawing (as opposed to software

designed for data visualization). While OrthoPak 3D is described as being “available free

of charge for teaching and research purposes” [CEGW98], the LEDA libraries are now

commercially licensed and this restricts the effective availability of the software. Binaries

are provided for Solaris and Linux environments.

Window system interface The main interactive window interface to OrthoPak 3D is

based around a LEDA GraphWin and is two-dimensional in essence. The graph data struc-

ture can be modified, new graphs created from several patterns (complete, random, planar,

etc.), and a variety of LEDA graph library functions is provided.

The included three-dimensional orthogonal drawing algorithms (described in [CEGW98])

are accessed from the GUI. Each outputs a drawing of the current graph using the particular

selected algorithm as a VRML file which must be displayed using a separate viewer (not

part of the OrthoPak 3D software).

1 Library of Efficient Data structures and Algorithms; see [MN99].

85

Three-dimensional input systems There is no capacity for direct three-dimensional po-

sition input or navigation; this is consistent with the two-dimensional nature of the Graph-

Win interface.

Plug-in system No integrated system for extending the functionality of OrthoPak 3D

is provided. New graph algorithms must be written in C++ (using the LEDA graph data

structures) and the application recompiled.

File format support Reading and writing to and from the LEDA native graph format is

supported, as is the standard GML format. Three-dimensional drawings are exported as

VRML, as indicated above.

Graph feature support The underlying LEDA package supports directed and undirected

graphs, including loops and multi-edges. Vertex clusters and explicit specification of hi-

erarchical graph features is not provided. Vertices and edges can be attributed by color,

shape, size, as well as user-specified arbitrary string values.

5.2 Best Practices For Visualization and Interaction

The intended use of the GLuskap system is as a cognitive tool for researchers in the area

of three-dimensional graph drawing; such researchers form the natural population in which

to assess the performance of the system. To best evaluate the performance of the GLuskap

system and the various techniques implemented to enhance the capabilities and ease of the

user, an in-depth user study would be required.

As such a study is beyond the scope of this thesis, the visualization and interaction

features of the GLuskap system will be examined in light of related research and alternative

implementation strategies in this area.

86

5.2.1 3D Graph Visualization Results In The Literature

It has been shown by Ware and Franck [WF96] that stereoscopic and kinetic enhancements

contribute greatly to increased user performance on path-tracing tasks in three-dimensional

graph drawing. They demonstrate a factor of 2.2 improvement in the complexity of the

data that can be understood when head-tracking information is incorporated to produce

motion feedback in the display, and a factor of 1.6 improvement (compared to baseline)

when a stereoscopic display is used. When both technologies are combined, a factor of 3

improvement over baseline performance is observed.

There are significant differences between the test apparatus in this study and the GLu-

skap system. In particular, Ware and Franck used a desktop computer monitor for display,

whereas the GLuskap system uses a large-screen display to approximate an immersive en-

vironment. The set of user tasks that are typically performed in the GLuskap environment is

also much more complex than simple path-tracing: users interactively create, manipulate,

and cognitively evaluate graph data structures and their three-dimensional drawings.

Despite these differences, their result would seem to indicate that further investigation

of how these techniques affect user performance in interactive graph drawing tasks is war-

ranted. Indeed, Ware and Franck themselves advance the case for use of advanced 3D

graphics techniques in diverse applications involving complex data structures.

5.2.2 Three-Dimensional Cues

Ware [War04] identifies techniques that can be used in a graphics display to augment the

perception of virtual objects and scenes as three-dimensional. These are related to the depth

cues discussed in Section 2.2.1; here we consider the implementation and effectiveness

of techniques that produce these depth cues in a graphics display. Stereoscopy will be

considered separately in the next section.

87

Perspective and occlusion The GLuskap OpenGL display implements standard 3D graph-

ics techniques for display of virtual scenes and objects using a linear perspective transfor-

mation. Z-buffering is used to ensure that near objects properly occlude more distant ob-

jects [SWN+03]. A ground plane is optionally drawn in the scene with texture to establish

a sense of scale.

The usefulness of the ground plane as a depth cue is enhanced by techniques that es-

tablish the position of virtual objects on the plane. This is trivial for objects that contact

or intersect the plane, as most objects in the natural world do (due to gravity). Objects

that float in space can be “anchored” through the use of pseudorealistic shadows cast on

the ground plane, or more explicitly by the use of vertical lines that extend from the object

to the plane. The latter technique, while less “realistic”, is easily understood by users and

can also aid the accurate perception of an object’s vertical distance from the plane; Kim

et al. [KTS93] show that it is comparable to stereopsis in its effectiveness at showing 3D

position.

Both of these techniques require additional computational power (shadows more so than

vertical lines) and contribute to the cluttering of the display. Though there is no significant

obstacle to doing so, neither have been implemented in the GLuskap interface at this time.

Illumination shading Basic simulation of shading from directional illumination is easily

achieved with OpenGL. Based on the conclusions of Ramachandran [Ram88] regarding the

model used by the brain in determining shape from shading, it is likely best results can be

obtained from this technique by using a single virtual light source illuminating objects

from above. GLuskap uses a single light source positioned directly behind the user. This

is judged to be adequate as the objects used for three-dimensional graph drawings (spheres

and cylinders) are simple; no semantic content is encoded in the shape of the individual

objects which would be revealed through shape-from-shading.

88

If GLuskap were to be expanded to allow attribution of vertices and edges with shape

information of sufficient subtlety, the lighting model could be enhanced to optimize user

discrimination of subtleties of object shape.

Texture gradients and contours As discussed in Section 3.1.1, regular texture patterns

help communicate the three-dimensional shape of irregular objects, as well as adding more

generally to the perceived realism of the virtual object. Texture also greatly aids the stereo-

scopic depth effect by providing more discrete points of similarity that can be fused by the

visual system.

The GLuskap drawing engine applies a regular checkerboard- and grid-like texture to

all graph objects as well as the ground plane. The texture pattern is scaled so as to be

visible at typical object sizes and working distances. Furthermore, the pattern is stretched

along the long axis of the three-dimensional cylinders which represent edges, emphasizing

their linear shape. Figure 5.1 presents a detail from a graph drawing, showing the texture

patterns used. Though no formal studies have been conducted of the GLuskap implemen-

tation, it has been the experience of the author that texturing increases the effectiveness of

stereoscopic viewing markedly.

5.2.3 Stereoscopy

GLuskap implements stereoscopy following established practices for OpenGL [Bou02],

but is subject to several conceptual and practical issues. Ware [War04, Ch.8] outlines these

common problems, including diplopia, frame cancellation, diminished stereographic effect

with distant objects, and vergence-focus conflicts.

Cyclopean scale, a technique involving automatic manipulation of the parameters of

the stereoscopic visualization in a transparent way, is described by Ware et al. [WGP98].

While it alleviates many of the aforementioned problems, the implementation of cyclopean

89

Figure 5.1: GLuskap Texture Patterns

scale requires the real-time assessment of the distance to the nearest object in the scene.

The authors suggest that this can be accomplished in a straightforward fashion by sampling

the OpenGL depth buffer (typically used to ensure that nearer objects occlude those more

distant).

Though cyclopean scale has not yet been implemented in the GLuskap interface. the

potential enhancement to the effectiveness of the stereographic display makes it a good

candidate for future development.

5.2.4 Interactive Pointer and Menu Interface

The direct coupling of three-dimensional pointer movement to the corresponding move-

ments of the physical wand device is a somewhat naı̈ve approach to the underlying problem

of selecting, positioning, and manipulating the attributes of three-dimensional structures in

a consistent and straightforward way.

A possible alternative for the selection of objects is adapted from the two-dimensional

90

interface display of the three-dimensional scene. In the two-dimensional context, objects

are selected with the mouse pointer which lies “in front of” the entire three-dimensional

scene. If multiple objects lie on the line of sight emanating from the position of the mouse

pointer, the nearest (i.e. visible) object is selected. By projecting a visible ray away from

the user from the position of the embedded three-dimensional pointer and selecting the

nearest object intersecting this “beam”, the user would be able to clearly and consistently

select objects that would not be within “reach” of the user under the current selection

paradigm (see Section 4.2.4, “Interactive highlight-and-select”).

The incorporation of a secondary input device for the non-dominant hand could also en-

hance the effectiveness of the GLuskap interface. In performing many real-life tasks, both

dominant and non-dominant hands are used. Guiard [Gui87] presents the kinematic chain

as a model for understanding the differences in functional role between the two hands: one

hand establishes a frame of reference within which the other can act—imagine one hand

holding a notebook while the other hand holds the pen for writing.

Two-handed control systems have been investigated in depth for two-dimensional inter-

face design [BSP+93, SFB94, KFBB97]. The use of these techniques in the construction of

three-dimensional interactive interfaces is less well-developed, though there do exist some

implementations [SG97, CFH97].

5.3 Software Engineering Techniques

5.3.1 Development and Planning Model

As an exercise in software development process management, the GLuskap project has had

mixed success. The GLuskap 2.4 development process was constrained to stabilizing and

overhauling the existing codebase with a minimal set of new features. By contrast, the

91

continuing development of the GLuskap system has been characterized by the prioritiza-

tion of new feature development over rigorous documentation and diligence. The push

to implement the capabilities required for the GLuskap system, particularly the networked

multi-head rendering system and the interface to the Flock of Birds motion tracking system,

has resulted in maintenance of other lower-priority software subsystems being neglected.

Having only one developer participating in development, while contributing to concep-

tual consistency (the design is the product of a single mind), has definite disadvantages in

the development and maintenance of complex systems. It is the experience of the author

that working with a second programmer, particularly one who is similarly immersed in the

codebase and development process, allows for the critical refinement of both design con-

cepts and module code. This is supported by the incorporation of pair programming into

the Extreme Programming software engineering paradigm [Bec00]: pair programming is

the formalization of assigning two programmers to work simultaneously on the same code,

to the extent of sharing a single workstation.

Change control with Subversion The aforementioned process control difficulties notwith-

standing, the use of the Subversion version control system to help manage the development

process has proved quite valuable. The implementation of significant bundles of related

functionality was eased by the ability to create a branch and implement a contained set of

changes without affecting the primary source code. Once complete and tested, the mod-

ifications to a branch can then be merged back into the main source code in a controlled

manner.

Also valuable to the development and debugging process is the tracking of particular

changes to the source code on a line-by-line, day-by-day basis. In combination with the

ability to “roll back” the progress of development to any point at which changes were com-

mitted, this provides a powerful aid to debugging. When an undesired change behaviour

92

is discovered, the software can be methodically tested backwards in time until proper be-

haviour is found; the bug can then be readily isolated.

5.3.2 Code and Structure Model

Best efforts have been made to ensure orthogonality and effective demarcation of bound-

aries between particular subsystems and code modules within the GLuskap program struc-

ture. Without metrics to perform a quantitative analysis of complexity and entanglement

on the GLuskap code base, it is difficult to draw strong conclusions about the effectiveness

of this effort. The following examples are presented to provide some degree of insight into

the structuring of the codebase.

Graph data structure Fundamental to the operation of the GLuskap software is the data

structure used to represent the graph (and by convenience, the three-dimensional embed-

ding and attributions thereof). Measures have been taken to ensure that the objects com-

posing the graph data structure have a minimal set of dependancies and certainly do not

reference any interface-specific components (such as wxPython or OpenGL). As a result,

the graph structure can be tested independent of the main GLuskap program, and a re-

gression test suite has been established to ensure consistency and reliability of this critical

component.

In the GLuskap 2.4 release, the OpenGL commands creating the virtual representations

of the graph objects were associated with the graph object classes themselves. During the

development process of the GLuskap system (since version 2.4), all drawing commands

were factored out of the graph data structure objects. This opens up the future possibility

of easily enhancing the 3D display to use alternate and varied shapes to represent graph

components.

93

Flexible input management system In order to manage multiple sources of input data

for navigation and manipulation in a straightforward manner, a producer-consumer model

was used for constructing the input management system. Before the Flock of Birds system

is initialized, for example, function callbacks on the InputManager object are registered

with the BirdCtl objects. These callbacks are then activated whenever the Flock devices

have updated positional data.

The separation of the Flock system from the core operations of the graph and user in-

terface through the InputManager infrastructure means that the incorporation of additional

support drivers for diverse input devices in future should be straightforward.

94

Chapter 6

Conclusions

Upon review of the previous chapter, it is apparent that there are still significant opportuni-

ties for improvement of the GLuskap system and the underlying software. The significance

of the extant work should not be underestimated, though: there exists in the literature

no other three-dimensional graph drawing product designed or adapted to work with a

head-tracked large-screen display with three-dimensional navigation and input using wand

tracking.

The hardware-software system described in the preceding chapters is a demonstration

of the potential use of large-scale 3D graphics and interactive systems technology in graph

drawing research. The GLuskap system functions as a cognitive tool, allowing the user to

externalize relatively abstract concepts in three dimensions. This allows not only further

machine-mediated exploration of the problem space, but facilitates communication of these

ideas to other individuals, either in the same physical space or by digital transmission.

Challenges of the Implementation The GLuskap software package draws on several

distinct libraries with discrete interfaces; combining the wxPython and Twisted packages,

which both provide their own asynchronous event handling mechanisms and event loops,

95

had the potential to be problematic. This particular overlap in responsibility was resolved

by integrating a new reactor architecture from the unreleased development version of Twisted.

In order to interface with the Flock of Birds hardware tracking system, no suitable library

was available, and I had to construct my own serial interface modules that integrated with

the GLuskap asynchronous core and provided translation and an object-oriented data deliv-

ery interface for the position and orientation data.

Throughout the course of the implementation, I made several attempts to design and im-

plement an effective system for animation of graph drawing algorithms and other demon-

strations. Preserving the readability of an algorithm implementation would seem to require

a synchronous execution model, as control should flow through the algorithm linearly. Al-

though it is discussed further below, I bring special attention to the animation problem here

as the considerable effort spent attempting to innovate a solution to this problem unfortu-

nately is not reflected in the system as it is currently implemented.

6.1 Future Work

The development of the GLuskap system to this point has opened several potential direc-

tions for additional research and development.

6.1.1 Window system interface

Considerable work has been invested into supporting the GLuskap large-screen interac-

tive interface and the attendant specialized hardware. While GLuskap remains usable as a

standalone product for viewing and modifying 3D graph drawings with a standard window

system interface, comparatively little attention has been given to developing an optimal

user experience in the window system.

Zeleznik and Forsberk [ZF99] and Smith et al. [SSS01] describe innovative models and

96

techniques for interaction in three dimensions using the standard two-dimensional input

methods available on most desktop computers. Finding a natural and effective method of

performing 3D navigation and manipulation tasks with a two-dimensional input device is

a productive avenue of development for GLuskap, as specialized 3D input hardware is rare

compared to the ubiquitous mouse interface.

6.1.2 User studies on interface

In keeping with the focus on developing GLuskap as an effective tool1 for graph drawing

research, a user study is indicated so as to provide definitive evaluation of the GLuskap

interfaces (large-screen and window system) in comparison to each other as well as other

interactive graph drawing systems.

The GLuskap interactive large-screen interface is likely the component of the system

which would benefit most from a user study. A human research program in this area would

serve to quantitatively assess the effectiveness of the interface elements as currently im-

plemented for the performance of common graph manipulation and visualization tasks. It

would also provide a qualitative framework to gather ideas for enhancement and revision

of both the design assumptions and the implementation to cater more particularly to the

specific needs of graph drawing researchers.

The internal component architecture of the GLuskap software allows for alternative in-

put and display concepts to be implemented and evaluated without substantial modification

of other subsystems. Alternate concepts for selection and navigation, display of graph ele-

ments, or general look and interactive feel of the large-screen and window system interfaces

can be integrated into the software.

1In the Bederson [Bed04] sense: see Section 2.2.3.

97

6.1.3 Plug-In Programming Interface

Ideally, the plug-in architecture will allow users to implement graph drawing and layout

algorithms in a straightforward and intuitive style. Readability and writability of plug-in

scripts are priorities for ongoing development in this area, as they contribute to the ability to

check the script implementation for correctness against more abstract original sources (e.g.

pseudocode or rough outline in a paper). To meet these requirements, the programming

interface should be made as simple as possible. Care must be taken, though, in abstracting

the complexity of the interface, such that the mechanisms of the interface itself do not suffer

in maintainability as a result.

6.1.4 Presentation Enhancements

The interpretation and analysis of graph drawings, and 3D layouts in particular, can be

made easier for the user through a variety of techniques that extend beyond the simple dis-

play and interaction model. For example, it is often the case that the step-by-step procedure

of a layout algorithm is animated for presentation as a video. The process of creating even

a short animation using standard 3D graphics tools can be a painstaking process, taking

hours or days of development time for a single video; this time cost cannot be amortized

over subsequent videos which must be made fresh.

Animations There are compelling reasons to augment the GLuskap software for the cre-

ation and presentation of animations. It would seem a natural enhancement to the plug-in

scripting interface: the step-by-step procedural nature of a script realizing a graph layout

lends itself to being animated simply by inserting appropriate time delays between steps

of the process. While conventional 3D graphics software packages may include facilities

to (e.g.) link objects together to facilitate animating the movement of vertices along with

98

their incident edges, the GLuskap software inherently understands the semantics of graphs

and graph drawings. An integrated animation system would also capitalize on the existing

large-screen stereographic display capabilities of the GLuskap system.

The major obstacle thus far to implementing such an animation system within the GLu-

skap plug-in architecture has been the reconciliation of the asynchronous nature of the

GLuskap software (see Section 4.2.2) with the desired simplicity of the scripting interface

(see above). The essence of animation is inserting a delay between sequential actions so

that they can be seen to take place one after the other. In a synchronous execution model,

this can be accomplished relatively easily and transparently by sleeping (suspending exe-

cution) after updating the display but before proceeding to the next step of the animation.

In the asynchronous case, though, the animation script cannot simply sleep, as this would

block the processing of asynchronous network and GUI events. Instead, it must relinquish

control to the scheduling system and provide a mechanism to resume processing when the

scheduler returns control after the specified amount of time has elapsed.

Explicitly breaking down the control flow of plug-in scripts such that they can be sched-

uled in small pieces has a highly detrimental effect on the straightforward readability of the

resulting script. An alternate technique is to pass scheduling responsibilities to the operat-

ing system by using threading. As discussed in Section 4.2.2, though, the use of threads

creates a nontrivial amount of overhead in the protection of data structures and can become

difficult to test effectively.

Non-Graph Objects A further useful enhancement to the GLuskap package for presenta-

tion and visualization purposes is the incorporation of objects into the virtual space that are

not strictly part of the graph drawing. These non-graph objects include anything that is not

a vertex or an edge—at present, GLuskap provides a ground plane and a set of coordinate

axes. Allowing the user to create additional non-graph objects (even in simple geometric

99

shapes such as planes and lines of arbitrary position and orientation) would facilitate the

perception of organizing principles in the graph drawing and draw attention to specific fea-

tures. The positioning of groups of vertices to lie in particular planes or on particular lines,

as is typical of many 3D graph drawing layout algorithms, can be easily conveyed in this

way.

The effect of this capability is enhanced if these objects can be stored and transmitted as

part of the graph drawing; this will require an extension to the GLuskap native file format.

Providing an interface to manipulate these objects from the plug-in scripting interface is

both natural and desirable, especially if animation capabilities are provided.

100

Bibliography

[ADH+01] D. Ascher, P. F. Dubois, K. Hinson, J. Hugunin, and T. Oliphant. Numeri-
cal Python. Technical Report UCRL-MA-128569, Lawrence Livermore Na-
tional Laboratory, Livermore, CA, 2001.

[AMH95] Motoyuki Akamatsu, I. Scott Mackenzie, and Thierry Hasbroucg. A com-
parison of tactical, auditory, and visual feedback in a pointing task using a
mouse-type device. Ergonomics, 38(4):816–27, April 1995.

[Arn03] Laura Arns. RP system. http://www.envision.purdue.edu/RPsystem.
html, 2003.

[Asca] Flock of birds. http://www.ascension-tech.com/products/
flockofbirds.php. Distributed by Ascension Technology Corpora-
tion.

[Ascb] Wanda device. http://www.ascension-tech.com/products/wanda.
php. Distributed by Ascension Technology Corporation.

[Aub04] David Auber. Tulip – A huge graph visualization framework. In Jünger and
Mutzel [JM04], pages 105–126.

[BBM96] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. How reuse influ-
ences productivity in object-oriented systems. Communications of the ACM,
39(10):104–116, 1996.

[BC71] Mehdi Behzad and Gary Chartrand. Introduction to the Theory of Graphs.
Allyn and Bacon, Inc., Boston, MA, 1971.

[BCMW04] Prosenjit Bose, Jurek Czyzowicz, Pat Morin, and David R. Wood. The maxi-
mum number of edges in a three-dimensional grid-drawing. Journal of Graph
Algorithms and Applications, 8(1):21–26, 2004.

[Bec00] Kent Beck. Extreme programming explained: embrace change. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[Bed04] Benjamin B. Bederson. Interfaces for staying in the flow. Ubiquity, 5(27),
September 2004.

101

http://www.envision.purdue.edu/RPsystem.html
http://www.envision.purdue.edu/RPsystem.html
http://www.ascension-tech.com/products/flockofbirds.php
http://www.ascension-tech.com/products/flockofbirds.php
http://www.ascension-tech.com/products/wanda.php
http://www.ascension-tech.com/products/wanda.php

[BEL04] Ulrik Brandes, Markus Eiglsperger, and Jürgen Lerner. GraphML primer.
http://graphml.graphdrawing.org/primer/graphml-primer.html,
June 2004.

[BETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the visualization of graphs. Prentice Hall, New Jersey, 1999.

[BFLR00] Dan Bennett, Paul A. Farrell, Michael A. Lee, and Arden Ruttan. A low
cost commodity based system for group viewing of 3D images. In S. Klasky
and S. Thorpe, editors, Proceedings of VDE2000, Visualization Development
Environments 2000, pages 145–149, 2000.

[BFN85] C. Batini, L. Furlani, and E. Nardelli. What is a good diagram? – A pragmatic
approach. In Proceedings of the 4th International Conference on the Entity
Relationship Approach, pages 312–319, Chicago, 1985.

[BM04a] Breght R. Boschker and Jurriaan D. Mulder. Lateral head tracking in desktop
virtual reality. In Sabine Coquillart and Martin Göbel, editors, Eurographics
Symposium on Virtual Environments EGVE’04, pages 45–54. Eurographics,
June 2004.

[BM04b] John M. Boyer and Wendy J. Myrvold. On the cutting edge: Simplified O(n)
planarity by edge addition. Journal of Graph Algorithms and Applications,
8(3):241–273, 2004.

[Bou02] Paul Bourke. 3D stereo rendering using openGL (and GLUT). http://
astronomy.swin.edu.au/∼pbourke/opengl/stereogl/, May 2002.

[Bro95] Frederick P. Brooks, Jr. The Mythical Man-Month: Essays on Software En-
gineering. Addison-Wesley, Reading, MA, 20th anniversary edition, 1995.

[BRT84] C. Batini, M. Ralamo, and R. Tamassia. Computer aided layout of entity-
relationship diagrams. Journal of Systems and Software, 4:163–173, 1984.

[BSP+93] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose. Tool glasses
and magic lenses: The see-through interface. In Proceedings of SIGGRAPH
’93, pages 73–80. ACM, 1993.

[BSWW99] T. Biedl, T. Shermer, S. Whitesides, and S. Wismath. Bounds for orthogonal
3-D graph drawing. Journal of Graph Algorithms and Applications, 3(4):63–
79, 1999.

[Ced03] Per Cederqvist. Version Management with CVS. Network Theory Ltd., Bris-
tol, UK, 2003.

102

http://graphml.graphdrawing.org/primer/graphml-primer.html
http://astronomy.swin.edu.au/~pbourke/opengl/stereogl/
http://astronomy.swin.edu.au/~pbourke/opengl/stereogl/

[CEGW98] M. Closson, H. Everett, S. Gartshore, and S. K. Wismath. ArrangePak, Or-
thoPak, and VisPak 2.0. Technical Report CS-01-98, University of Leth-
bridge, 1998.

[CELR97] R. F. Cohen, P. Eades, T. Lin, and F. Ruskey. Three-dimensional graph draw-
ing. Algorithmica, 17:199–208, 1997.

[CFH97] Lawrence D. Cutler, Bernd Frölich, and Pat Hanrahan. Two-handed direct
manipulation on the responsive workbench. In SI3D ’97: Proceedings of the
1997 symposium on Interactive 3D graphics, pages 107–114, New York, NY,
USA, 1997. ACM Press.

[CP95] P. Crescenzi and A. Piperno. Optimal-area upward drawings of AVL trees. In
R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD ’94), volume
894 of Lecture Notes in Computer Science, pages 307–317. Springer-Verlag,
1995.

[CS97] Tiziana Calamoneri and Andrea Sterbini. Drawing 2-, 3- and 4-colorable
graphs in O(n2) volume. In GD ’96: Proceedings of the Symposium on
Graph Drawing, pages 53–62, London, UK, 1997. Springer-Verlag.

[CS02] Ben Collins-Sussman. The Subversion project: Building a better CVS. Linux
Journal, 2002(94):3, 2002.

[CSFP05] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version
Control with Subversion. O’Reilly and Associates, Sebastopol, CA, USA,
2005.

[DE04] Tim Dwyer and Peter Eckersley. WilmaScope – A 3D graph visualization
system. In Jünger and Mutzel [JM04], pages 55–76.

[DEL+05] Olivier Devilliers, Hazel Everett, Sylvain Lazard, Maria Pentcheva, and
Stephen Wismath. Drawing Kn in three dimensions with one bend per edge.
In Patrick Healy and Nikola S. Nikolov, editors, Proceedings of the 13th In-
ternational Symposium on Graph Drawing (GD 2005), Limerick, Ireland,
September 2005. Springer-Verlag.

[dFPP88] H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting Fary embed-
dings of planar graphs. In Proceedings of the 20th Annual ACM Symposium
on Theory of Computation, pages 426–433, 1988.

[dFPP90] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a
grid. Combinatorica, 10(1):41–51, 1990.

[DH96] Ron Davidson and David Harel. Drawing graphs nicely using simulated an-
nealing. ACM Transactions on Graphics, 15(4):301–331, 1996.

103

[DHW04] Breanne Dyck, Sebastian Hanlon, and Stephen K. Wismath. GLuskap 2.4
user’s manual. Technical Report CS-03-04, University of Lethbridge, 2004.

[DJN+03] Breanne Dyck, Jill Joevenazzo, Elspeth Nickle, Jon Wilsdon, and Stephen
Wismath. GLuskap: Visualization and manipulation of graph draw-
ings in 3-dimensions. http://www.cs.uleth.ca/∼vpak/gluskap/docs/
software.ps, 2003.

[DJN+04] Breanne Dyck, Jill Joevenazzo, Elspeth Nickle, Jon Wilsdon, and Stephen K.
Wismath. Drawing Kn in three dimensions with two bends per edge. Techni-
cal Report CS-01-04, University of Lethbridge, 2004.

[DW04] Vida Dujmović and David R. Wood. Three-dimensional grid drawings with
sub-quadratic volume. In János Pach, editor, Towards a Theory of Geometric
Graphs, number 342 in Contemporary Mathematics, pages 55–66. American
Mathematical Society, 2004.

[EGK+04] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North,
and Gordon Woodhull. Graphviz and Dynagraph – static and dynamic graph
drawing tools. In Jünger and Mutzel [JM04], pages 127–148.

[EHW97] Peter Eades, Michael E. Houle, and Richard Webber. Finding the best view-
points for three-dimensional graph drawings. In GD ’97: Proceedings of the
5th International Symposium on Graph Drawing, pages 87–98, London, UK,
1997. Springer-Verlag.

[ESW00] Peter Eades, Antonios Symvonis, and Sue Whitesides. Three-dimensional
orthogonal graph drawing algorithms. Discrete Applied Mathematics, 103(1-
3):55–87, 2000.

[Fár48] I. Fáry. On straight line representation of planar graphs. Acta Univ. Szeged.
Sect. Sci. Math., 11:229–233, 1948.

[Fet05] Abe Fettig. Twisted Network Programming Essentials. O’Reilly and Asso-
ciates, Sebastopol, CA, USA, October 2005.

[FG00] Julie Fraser and Carl Gutwin. The effects of feedback on targeting perfor-
mance in visually stressed conditions. In Graphics Interface, pages 19–26,
May 2000.

[FLW03] Stefan Felsner, Giuseppe Liotta, and Stephen Wismath. Straight-line draw-
ings on restricted integer grids in two and three dimensions. Journal of Graph
Algorithms and Applications, 7(4):363–398, 2003.

[FR91] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by
force-directed placement. Software–Practice and Experience, 21(11):1129–
1164, 1991.

104

http://www.cs.uleth.ca/~vpak/gluskap/docs/software.ps
http://www.cs.uleth.ca/~vpak/gluskap/docs/software.ps

[FSF91] GNU General Public License. Free Software Foundation, Boston, MA, June
1991. Version 2.

[FSF99] GNU Lesser General Public License. Free Software Foundation, Boston,
MA, February 1999. Version 2.1.

[Gib86] James J. Gibson. The Ecological Approach to Visual Perception. Lawrence
Erlbaum Associates, Hillsdale, New Jersey, 1986.

[GMHW03] Perry Greenfield, Jay Todd Miller, Jin-chung Hsu, and Richard L.
White. numarray: A new scientific array package for Python.
http://www.stsci.edu/resources/software hardware/numarray/
papers/pycon2003.pdf, March 2003.

[Gui87] Y. Guiard. Asymmetric division of labor in skilled bimanual action: The
kinematic chain as a model. Journal of Motor Behavior, 19:486–517, 1987.

[Him96] M. Himsolt. GML: Graph modelling language. Manuscript, Universität
Passau, Innstraße 33, 94030 Passau, Germany, 1996. Available at http:
//infosun.fmi.uni-passau.de/Graphlet/GML/gml-tr.html.

[IdFC03] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes. Lua 5.0 reference man-
ual. Technical Report MCC-14/03, PUC-Rio, 2003.

[Ipp05] Bob Ippolito. py2app - convert python scripts into standalone mac os x ap-
plications. http://undefined.org/python/py2app.html, 2005.

[JM04] Michael Jünger and Petra Mutzel, editors. Graph Drawing Software.
Springer-Verlag, Berlin, Heidelberg, 2004.

[KB67] A. N. Kolmogorov and Ya. M. Barzdin. On the realization of nets in 3-
dimensional space. Problems in Cybernetics, 8:261–268, March 1967.

[KFBB97] G. Kurtenbach, G. Fitzmaurice, T. Baudel, and B. Buxton. The design and
evaluation of a GUI paradigm based on two-hands, tablets, and transparency.
In Proceedings of CHI ’97, pages 35–42. ACM, 1997.

[Kil97] Mark Kilgard. Achieving quality PostScript output for OpenGL.
http://www.opengl.org/resources/code/rendering/mjktips/
Feedback.html, April 1997.

[KTS93] Won S. Kim, Frank Tendick, and Lawrence Stark. Visual enhancements in
pick-and-place tasks. In Stephen R. Ellis, Mark K. Kaiser, and Arthur J.
Grunwald, editors, Pictorial communication in virtual and real environments
(2nd ed.), pages 265–282. Taylor & Francis, Inc., Bristol, PA, USA, 1993.

105

http://www.stsci.edu/resources/software_hardware/numarray/papers/pycon2003.pdf
http://www.stsci.edu/resources/software_hardware/numarray/papers/pycon2003.pdf
http://infosun.fmi.uni-passau.de/Graphlet/GML/gml-tr.html
http://infosun.fmi.uni-passau.de/Graphlet/GML/gml-tr.html
http://undefined.org/python/py2app.html
http://www.opengl.org/resources/code/rendering/mjktips/Feedback.html
http://www.opengl.org/resources/code/rendering/mjktips/Feedback.html

[KvL85] M. R. Kramer and J. van Leeuwen. The complexity of wire-routing and
finding minimum area layouts for arbitrary VLSI circuits. In F. P. Preper-
ata, editor, Advances in Computing Research, volume 2, pages 128–146. JAI
Press, Greenwich, CT, 1985.

[KW01] M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and Mod-
els, volume 2025 of Lecture Notes in Computer Science. Springer-Verlag,
2001.

[Lei80] C. E. Leiserson. Area-efficient graph layouts (for VLSI). In Proceedings of
the IEEE Symposium on the Foundations of Computer Science, pages 270–
281, 1980.

[LN04] Claus Lewerentz and Andreas Noack. CrocoCosmos – 3D visualization of
large object-oriented programs. In Jünger and Mutzel [JM04], pages 279–
298.

[Lut96] Mark Lutz. Programming Python. O’Reilly and Associates, Sebastopol, CA,
USA, 1996.

[LV97] S. J. Luck and E. K. Vogel. The capacity of visual working memory for
features and conjunctions. Nature, 390(6657):279–281, November 1997.

[Mar82] David Marr. Vision. W. H. Freeman and Company, New York, 1982.

[MCR90] Jock D. Mackinlay, Stuart K. Card, and George G. Robertson. Rapid con-
trolled movement through a virtual 3D workspace. In SIGGRAPH ’90: Pro-
ceedings of the 17th annual conference on Computer graphics and interac-
tive techniques, pages 171–176, New York, NY, USA, 1990. ACM Press.

[MN99] Kurt Melhorn and Stefan Näher. LEDA: A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, Cambridge, UK, 1999.

[Mun97] Tamara Munzner. H3: laying out large directed graphs in 3D hyperbolic
space. In INFOVIS ’97: Proceedings of the 1997 IEEE Symposium on In-
formation Visualization (InfoVis ’97), page 2, Washington, DC, USA, 1997.
IEEE Computer Society.

[MW04] Pat Morin and David R. Wood. Three-dimensional 1-bend graph drawings. In
Proceedings of the 16th Canadian Conference on Computational Geometry
(CCCG’04), pages 40–43, 2004.

[Noa03] Andreas Noack. An energy model for visual graph clustering. In Giuseppe
Liotta, editor, Graph Drawing (Proc. GD ’03), pages 425–436, Berlin, 2003.
Springer-Verlag.

106

[NT90] J. Nummenmaa and J. Tuomi. Constructing layouts for ER-diagrams from
visibility representations. In Proceedings of the 9th International Conference
on the Entity-Relationship Approach, pages 303–317, 1990.

[NTU05] Kumiko Nomura, Satoshi Tayu, and Shuichi Ueno. On the orthogonal draw-
ing of outerplanar graphs. IEICE Trans Fundamentals, E88-A(6):1583–
1588, 2005.

[PCS+00] Emilee Patrick, Dennis Cosgrove, Aleksandra Slavkovic, Jennifer A. Rode,
Thom Verratti, and Greg Chiselko. Using a large projection screen as an
alternative to head-mounted displays for virtual environments. In CHI ’00:
Proceedings of the SIGCHI conference on Human factors in computing sys-
tems, pages 478–485, New York, NY, USA, 2000. ACM Press.

[PM92] R. Patterson and W. L. Martin. Human stereopsis. Human Factors,
34(6):669–692, 1992.

[PR94] S. E. Palmer and I. Rock. Rethinking perceptual organization: The role
of uniform connectedness. Psychonomic Bulletin and Review, 1(1):29–55,
1994.

[PT99] Achilleas Papakostas and Ioannis G. Tollis. Algorithms for incremental or-
thogonal graph drawing in three dimensions. Journal of Graph Algorithms
and Applications, 3(4):81–115, 1999.

[PTT97] János Pach, Torsten Thiele, and Géza Tóth. Three-dimensional grid drawings
of graphs. In GD ’97: Proceedings of the 5th International Symposium on
Graph Drawing, pages 47–51, London, UK, 1997. Springer-Verlag.

[PV97] Maurizio Patrignani and Francesco Vargiu. 3DCube: A tool for three dimen-
sional graph drawing. In Giuseppe Di Battista, editor, Proc. 5th Int. Symp.
Graph Drawing, GD, number 1353, pages 284–290. Springer-Verlag, 1997.

[PV04] Eric Paquet and Herna L. Viktor. Visualisation, exploration and characteriza-
tion of virtual collections. In XXth Congress of the International Society for
Photogrammetry and Remote Sensing, Commission V, pages 597–602, July
2004.

[Ram88] V. S. Ramachandran. Perception of shape from shading. Nature, 331:163–
166, 1988.

[RJB99] James Rumbaugh, Ivar Jacobson, and Grady Booch, editors. The Unified
Modeling Language reference manual. Addison-Wesley Longman Ltd., Es-
sex, UK, 1999.

107

[RMC91] George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. Cone trees:
animated 3D visualizations of hierarchical information. In CHI ’91: Pro-
ceedings of the SIGCHI conference on Human factors in computing systems,
pages 189–194, New York, NY, USA, 1991. ACM Press.

[Roc75] Marc J. Rochkind. The source code control system. IEEE Transactions on
Software Engineering, SE-1(4):364–370, December 1975.

[Ros83] A. L. Rosenberg. Three-dimensional VLSI: A case study. Journal of the
ACM, 30(2):397–416, 1983.

[RSFWH98] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy
Hopper. Virtual network computing. IEEE Internet Computing, 2(1):33–38,
1998.

[SACR03] Jay Summet, Gregory D. Abowd, Gregory M. Corso, and James M. Rehg.
Virtual rear projection: A comparison study of projection techniques for large
interactive displays. Technical Report 03-36, Georgia Institute of Technol-
ogy, 2003.

[Sch90] W. Schnyder. Embedding planar graphs on the grid. In Proceedings of the
1st ACM-SIAM Symposium on Discrete Algorithms, pages 138–148, 1990.

[Sch95] Douglas C. Schmidt. Using design patterns to develop reusable object-
oriented communication software. Communications of the ACM, 38(10):65–
74, 1995.

[SFB94] M. C. Stone, K. Fishkin, and E. A. Bier. The movable filter as a user interface
tool. In Proceedings of CHI ’94, pages 306–312. ACM, 1994.

[SG97] Zsolt Szalavari and Michael Gervautz. The personal interaction panel - a
two-handed interface for augmented reality. Computer Graphics Forum,
16(3):335–346, 1997.

[SKC96] C.-S. Shin, S. K. Kim, and K.-Y. Chwa. Area-efficient algorithms for upward
straight-line tree drawings. In Proceedings of the 2nd International Comput-
ing and Combinatorics: COCOON’96, volume 1090 of Lecture Notes in
Computer Science, pages 106–116. Springer-Verlag, 1996.

[SM03] William R. Sanders and David F. McAllister. Producing anaglyphs from
synthetic images. In Andrew J. Woods, Mark T. Bolas, John O. Merritt,
and Stephen A. Benton, editors, Stereoscopic Displays and Virtual Reality
Systems X, volume 5006, pages 348–358. SPIE, 2003.

108

[SSS01] Graham Smith, Tim Salzman, and Wolfgang Stuerzlinger. 3D scene manipu-
lation with 2D devices and constraints. In Proceedings of GRIN’01: Graph-
ics Interface 2001, pages 135–142, Toronto, Ont., Canada, Canada, 2001.
Canadian Information Processing Society.

[Sug02] Kozo Sugiyama. Graph Drawing and Applications for Software and Knowl-
edge Engineers. World Scientific, New York, 2002.

[SWN+03] Dave Shreiner, Mason Woo, Jackie Neider, Tom Davis, and Mary Beth Sheri-
dan. OpenGL Programming Guide. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 4th edition, 2003.

[Tam85] R. Tamassia. New layout techniques for entity-relationship diagrams. Pro-
ceedings of the 4th International Conference on the Entity-Relationship Ap-
proach, pages 304–311, 1985.

[TDB92] W. M. Thomas, A. Delis, and V. R. Basili. An evaluation of ada source
code reuse. In Proceedings of the 11th Ada-Europe international conference
on Ada: moving towards 2000, pages 80–91, London, UK, 1992. Springer-
Verlag.

[Tic85] Walter F. Tichy. RCS—A system for version control. Software—Practice
and Experience, 15(7):637–654, 1985.

[Tre96] L. Trevisan. A note on minimum-area upward drawing of complete and Fi-
bonacci trees. Information Processing Letters, 57(5):231–236, 1996.

[Twi] Asynchronous programming with Twisted. http://twistedmatrix.com/
projects/core/documentation/howto/async.html.

[Vin97] Steve Vinoski. CORBA: integrating diverse applications within distributed
heterogeneous environments. IEEE Communications Magazine, 14(2), 1997.

[vR05] Guido van Rossum. Python reference manual. http://docs.python.org/
ref/ref.html, September 2005.

[War04] Colin Ware. Information Visualization: Perception for Design. Morgan
Kaufmann, San Francisco, 2nd edition, 2004.

[WB94] Colin Ware and Ravin Balakrishnan. Reaching for objects in VR displays:
lag and frame rate. ACM Transactions on Computer-Human Interaction,
1(4):331–356, 1994.

[WF96] C. Ware and G. Franck. Evaluating stereo and motion cues for visualiz-
ing information nets in three dimensions. ACM Transactions on Graphics,
15(2):121–140, 1996.

109

http://twistedmatrix.com/projects/core/documentation/howto/async.html
http://twistedmatrix.com/projects/core/documentation/howto/async.html
http://docs.python.org/ref/ref.html
http://docs.python.org/ref/ref.html

[WGP98] Colin Ware, Cyril Gobrecht, and Mark Andrew Paton. Dynamic adjustment
of stereo display parameters. IEEE Transactions on Systems, Man, and Cy-
bernetics: Part A, 28(1):56–65, 1998.

[WO53] H. Wallach and D. H. O’Connell. The kinetic depth effect. Journal of Exper-
imental Psychology, 45:205–217, 1953.

[ZF99] Robert Zeleznik and Andrew Forsberg. Unicam—2D gestural camera con-
trols for 3D environments. In SI3D ’99: Proceedings of the 1999 symposium
on Interactive 3D graphics, pages 169–173, New York, NY, USA, 1999.
ACM Press.

[ZL02] Moshe Zadka and Glyph Lefkowitz. The Twisted network framework. In
Proceedings of the Tenth International Python Conference, 2002.

110

	Approval/Signature Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivations
	The GLuskap VR System
	Applications Of 3D Graph Drawing
	Structure Of This Document

	Background
	Graph Drawing
	Visualization and Interaction
	Interactive 3D Graph Drawing

	Design
	Software System
	Hardware System

	Implementation
	The Visualization Hardware System
	Interactive Graph Drawing Software
	Software Engineering Techniques

	Evaluation
	Other Interactive Graph Drawing Systems
	Best Practices For Visualization and Interaction
	Software Engineering Techniques

	Conclusions
	Future Work

	Bibliography

